Project funded by the EU Horizon 2020 programme under the Marie

Sk Idowska-Curie grant agreement No 871342

uDevoOps

Software Quality Assurance for Microservice Development
Operations Engineering

Deliverable D3.1. Sampling-based Testing Techniques
Design and Algorithms for QoS Testing

O

uDevOps

February 2023

Abstract

This document reports the results of Deliverable D3.1 of the uDevOps
project, entitled “Sampling-based Testing Techniques Design and Algorithms
for QoS Testing”. The type of the deliverable is marked as Report, and its
dissemination level is Public. The document will be made available through

the project’s website, https://udevops.eu/.

The document describes the techniques designed for testing
Quality-of-Service (QoS) attributes for microservices, namely reliability,
performance, security. The techniques also support testing for checking

functional correctness and robustness.

The structure is as follows: first, an overview on the key challenges
for testing, viewed in the context of Microservice and DevOps practices, is
given. Then, a background section explains the adopted terminology and
assumptions, the role of probabilistic sampling and of the auxiliary process-
related information it requires about the system under test. Then, the testing
techniques will be described with reference to the quality assessment and

qguality improvement perspective.

CcO

uDevOps

CONTENTS

CONTENT S ..ttt ittt eeieeeenneeennneeannessannesannssnnnns i
1 INTRODUCTION ...ttt iiiit ittt eeneeennneeennaeeannneens 1
11 MOTIVATION. ..ttt ittt ie et eiaeenneeeanneeannns 1

1.2 THETESTER'SCHALLENGEciiiriiiiiiiiiienennnnnnn 3

1.3 THEMAINSTRATEGIEScoviiiiiiiiiiiiiineennnennnnns 5

2 BACKGROUND ON SURVEY SAMPLING TECHNIQUES.............. 10
21 TERMINOLOGY.....iitiiiiieiieennneeennneeenneeennnens 1

2.2 ASSUMPTIONS ...ttt iiieeieenneennnaeannnens 13

2.3 THE ROLE OF AUXILIARY INFORMATION.ccvunu... 15

3 ACCEPTANCE TESTINGASSAMPLING.cciiiiiiiiiiiinennnnn 22
34 OVERVIEWttt ittt ittt ieeneeennneennnennnnns 22

3.2 ADAPTIVE ALLOCATIONOF TESTCASESccvvvvinnnnn. 26

3.3 SELECTION OF TESTCASES.....coiittiiiiiinneennneeennns 29

3.3.1 SRSWR-basedtesting ...ttt 30

3.3.2 SRSWOR-basedtesting............coiiiiiiiiiiiiii.. 31

CONTENTS

3.4

3.5

3.6

CcO

uDevOps
3.3.3 Stratified SRStesting...........coiiiiii 33
3.3.4 PPS-basedtesting.............. i 35
3.3.5 PPS-RHC technique ... 37
3.3.6 Adaptive sampling technique......................... 40
3.37 Estimation 44
ESTIAMTING THE OPERATIONAL PROFILE 45
3.4.1 Software operational profile.......................... 45
3.4.2 Dealing with profile uncertainty 47
3.4.3 Reliability modeling framework 48
3.4.4 Estimation of variableprofile......................... 53
RELIABILITY TESTING . ..ottt iiiiiiiiiineinennennes 56
3.5.1 USagE SCENANIOS ..ottt 58
3.5.2 Themethod............... i 59
PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VIA

OP-BASED SAMPLINGciiuiiiiiiiiiiiiiinnennncennnns 68
3.6.1 Definition of the operating conditions 70
3.6.2 Ex-vivotesting........coiiiiiiii 72
3.6.3 Performance-reliability analysis 74

11

CcO

uDevOps
CONTENTS
4 SYSTEM TESTING FOR FUNCTIONAL AND ROBUSTNESS 77
41 THE SPECIFICATION-BASED TESTING METHOD.............. 78
4.2 OVERVIEW.ottt iiiiitetiseentteennnnnnns 8o
4.3 MACROHIVEciiiiiiiiiiiiiiiiiiiietetrenescnonnananas 82
5 CONCLUSION.iiiiiiiiiiiiiettteeennnesssessasssnnnncsssnnans 90
REFERENCESoiiiiiiiiiiiiiiiiiiitittiinnnessssenssseannnnsssnnnns 91

i1

CcO

uDevOps

1 INTRODUCTION

1.1 MOTIVATION

The ultimate aim of testing is to expose potential failures that may impact
the user experience in operation. Engineers select and prioritize test inputs
according to the objective, e.g., checking functional correctness and/or
satisfying quality requirements, such as robustness, reliability, performance,
security. Failures, therefore, refer to deviations from such functional and
non-functional requirements (i.e., from the expected behaviour) - namely,

the system is said to fail when it does not satisfy these requirements.

Once failures are exposed, the natural following objective is then to
improve the software, by removing the identified failure’s cause. Therefore,
the next activity is debugging, which identifies and removes the underlying
cause (also known as fault or defect) of the exposed failures. However, it is
also extremely important for engineers (designers, developers and testers)
to know the extent to which the operating software will possess the quality

attribute of interest once will be deployed. Therefore, assessment, besides

1

CcO

uDevOps

1.1. MOTIVATION

the improvement, is the further important objective, as it gives information
useful for decision-making (e.g., if the product is ready to release or needs
more testing, if quality is improving or not from release to release, ...). This
distinctionresembles the debug testing vs operational testing view present in
the literature of 90’s Beizer (1997). The two perspectives differ in how tests
are derived - i.e., test generation criteria may differ because the objective
is different, as the former aims at fault detection while the latter accounts
for the expected operational profile to assess the runtime failure probability.
Also, in a testing-for-assessment the software is typically kept unchanged
for the whole duration of the testing session (debugging is done afterwards
to not bias the assessment), although this is not always the case (in fact,
the assessment can also be done during a testing-for-improvement session
via models - hence with no dedicated testing-for-assessment session - as

discussed in the next Section).

Apart from this latter case, testing for improvement and testing for
assessment usually occur in different phases of the lifecycle, depending
on the adopted development process, and require different pieces of
information. In a DevOps-driven development process for Microservices,
like the one we consider in this project, testing for improvement occurs: i)
during implementation (unit tests by developers), ii) during the continuous

integration, when evolving regression test suites are continuously run’,

'Continuous integration is a well-known practice in Microservice-Devops context, which runs automatic

integration tests to always have a working build of the system

CcO

uDevOps

1.2. THE TESTER’S CHALLENGE

iii) during system testing, where the software is checked for functional
correctness and possibly robustness with respect to the specified system
requirements. Testing for assessment is typically run by the QA team in
the acceptance testing stage, i.e., to assess if predefined quality gates
(which are exactly those mentioned quality requirements, e.g., minimum
required reliability, performance, security) are satisfied. Acceptance testing,
unlike system testing, accounts for the user requirements (besides the
specified system requirements); a good acceptance testing session should,
in fact, consider the way in which the user is expected to exercise the
system, namely the operational profile. It aims at the quality-in-use, and
for a system to be accepted it does not just need to be compliant with the
specified system requirements, it must meet the user needs. The main
project’s aim is to support quality assessment - techniques presented in
Chapter 3. Though, we have also developed techniques for improvement to
be used in the system testing stage for checking functional correctness and

robustness, which will be presented in Chapter 4.

1.2 THE TESTER’S CHALLENGE

When testing for assessment, there are several challenges for testers. The
most important issue is the following: assumed that not all faults will be
detected in reasonable testing time, the problem for testing practitioners

is to identify which are those failure-causing inputs that are more likely to

CcO

uDevOps

1.2. THE TESTER’S CHALLENGE

impact the user experience in operation. Failure-causing inputs are, clearly,
unknown upfront, thus the challenge for testers is to select those that have
the largest impact on the expected failure probability in operation, so as to
get the best result with few tests.? This goal is challenged by the following

issues:

e [Efficiency and representativeness. “Getting the best result with few
tests” is of paramount importance for feasibility and scalability of
testing: with the huge input space of today’s large software systems,
it becomes harder and harder to find the “best” failure-causing inputs
in reasonable testing time. In critical systems, it may be very hard to

expose the few failures, and a lot of tests might be required.

It is worth to note that the goal for a tester should not merely be
to make the system fail (which can be achieved, for instance, by
robustness testing), but should be to spot failure-causing inputs
most frequently occurring in operation Cotroneo et al. (2013), which

is much trickier - that is what representativeness refers to.

This challenge involves not only the efficient test generation/selection
phase, but also the planning phase when testing resources need to
be allocated to different parts (e.g., components, modules, or input

partitions) of a system.

2Note that large impact is not (or at least not only) meant in terms of severity of the caused failure, but
is in terms of frequency of occurrence of the failure caused. Severity can be a further variable to consider if

relevant.

1.3. THE MAIN STRATEGIES

1.3

CcO

uDevOps

Uncertainty. The way in which the software will be used is generally
not known (at least not exactly) at testing time - technically speaking,
the operational profile is unknown. Generating representative tests
is therefore difficult. Luckily, this problem - historically a big hurdle
for techniques based on the operational profile estimates - can be
smoothed today by the agile development practices: in fact, with the
need of continuous feedback, data from the filed are readily available
and much more is known about how the software is being used and
about its failures - a rich source of information that testers should

exploit to drive to improve efficiency and accuracy of testing.

This is the situation we encounter in Microservice-DevOps
development, where continuous monitoring is a key principle

and turns out to be very useful to drive testing.

THE MAIN STRATEGIES

Acting without knowing the effect of taken actions is a further source of

uncertainty. Testers need to know with reasonable accuracy what quality

level their software achieved. Does it need more testing? Are there parts

that need more testing than others? Which part is contributing more

to quality? Is the product ready for release? Can | demonstrate, with a

certain level of confidence, that the product is ready? Quality assessment is

paramount for these questions. Depending on the quality attribute, there

CcO

uDevOps

1.3. THE MAIN STRATEGIES

are several techniques for assessment, roughly divided in model-based,
measurements-based, hybrid. Some of these are mentioned in Deliverable
D2.1 of the project. If we look at reliability, one for which the literature is

abundant, the assessment can be achieved i) during testing or ii) by testing:

Software reliability growth models (SRGM).

SRGM observe the fault detection and correction process occurring during
testing (i.e., they do not influence testing, but just use observed data) to fit
a model projecting the expected improve reliability as result of testing and
debugging. With SRGM, failure data observed during testing and debugging
are used to build (parametric and non-parametric) models predicting the
next time to failure, thus failure intensity at the end of testing. In this case,
detected faults are removed (i.e., code is changed), and reliability grows
during testing: the goal is to figure out when debug testing can be stopped. A
plenty of SRGMs exist in the literature, all trying to capture the possible fault
detection patterns of a testing process (e.g., Goel (1985); Goel and Okumoto
(1979); Gokhale and Trivedi (1998); Ohishi et al. (2009)). The criticisms
of this approach lie in their numerous assumptions due to the difficulties
in modeling the complex factors involved in a real testing and debugging
process Almering et al. (2007). When used, SRGM consider data during
“development” testing Musa (1996), hence during testing-for-improvement,

preferably during system testing since they are considered closer to the

CcO

uDevOps

1.3. THE MAIN STRATEGIES

expected operational usage.

Sampling-based testing

In alternative to, or besides, assessing during testing, researchers proposed
testing techniques to probabilistically assess reliability by running a
dedicated testing session, without changing the code with debugging
(hence with code frozen) in which the software is exercised with inputs
more likely to occur at runtime (i.e., according to the operational profile).
This is an acceptance testing scenario, and in the case of Microservice-
DevOps process, it matches with the quality gate identification by the QA

team before release.

In this case, probabilistic sampling techniques can be used, which
allows for treating the failure probability estimation problem as statistical
estimation problem of a parameter of interest. Although test cases can be
selected by a uniform distribution (i.e., what is known as random testing),
the idea to get an unbiased estimate of the failure probability in operation
is to sample test cases according to the operational profile (i.e.,, by a
distribution depending on the expected usage of functionalities). Many
papers referred to the latter as operational testing, and it is a pillar of
reliability testing (although can be used for other quality attributes too,
as we claim in this project). It was adopted for certification testing in the

Cleanroom methodology Mills et al. (1987), Currit et al. (1986), Cobb and

CcO

uDevOps

1.3. THE MAIN STRATEGIES

Mills (1990), Linger and Mills (1988), Poore (1990), and in the Software
Reliability Engineering Test process Musa (1996). More recent work
improved operational testing either in terms of adaptiveness to allocate
test cases or of test selection scheme. Adaptive testing was proposed by
Cai et al., based still on operational profile but foreseeing adaptation in
the assignment of test cases to input domains Cai et al. (2004), Cai et al.
(2008), Cai (2002). The authors formulate testing as an adaptive control
problem using controlled Markov chains, with the goal of minimizing the
variance of reliability estimator. In Lv et al. (2014b), it is used along with
a gradient descent method to the same aim, while in Lv et al. (2014a), it
exploits confidence intervals as driving criterion to select tests adaptively.
In terms of test selection, few approaches went beyond the basic simple
random sampling with replacement (SRSWR) scheme. In Podgurski et al.
(1999), authors propose to estimate reliability by stratified sampling. Cluster
analysis is applied to execution profiles to stratify captured operational
executions, and then sampling within strata is without replacement, which
is known to be more efficient than the with-replacement counterpart. There
is no adaptiveness to online test outcomes, though. In a PhD proposal
Omri (2014), (non-adaptive) stratified sampling is still proposed, combined
with symbolic execution to stratify profiles. Further approaches to assess
reliability (and/or its bounds) are available that use failure data and possibly
other evidence, based, for instance, on Bayesian approaches or uncertainty

quantification Gashi et al. (2009); Popov (2002); Singh et al. (2001); Strigini

CcO

uDevOps

1.3. THE MAIN STRATEGIES

and Povyakalo (2013); Strigini and Wright (2014), but are outside the scope

of this work, as they do not target testing strategies.

Note that sampling-based testing also suffers from the same problems
of efficiency and uncertainty mentioned at the beginning of this Section.
We aim to overcome them via advanced sampling techniques and proper

modelling of the operational profile, as presented in the next Chapter.

CcO

uDevOps

2 BACKGROUND ON SURVEY SAMPLING
TECHNIQUES

We advocate the use of sampling to address the efficiency issue, and the
continuous monitoring available in a Microservice-DevOps context for the
representativenss issue. These support the testing-for-assessment strategy

described in the next Chapter.

The objective is to provide an estimate of the quality attribute of
interest that is unbiased (hence, its expectation is the true value) and
efficient (namely, with a minimal variance, that implies high confidence, or,
conversely, with a small number of test cases given a minimum confidence

in the estimate we want to have).

Statistical sampling methods are a natural way to cope with this
problem, as their goal is to design sampling plans tailored for a population
to study, and provide estimators with the mentioned properties. Specifically,
while unbiasedness (and other basic properties, like consistency and

sufficiency Pham (2006)) are easier to obtain, the driving principle to select

10

CcO

uDevOps

2.1. TERMINOLOGY

an estimator is its efficiency in relation to the number of observations

required.

However, the literature on sampling-based software testing proposed
very few attempts to go beyond the conventional random or operational
testing. The latter ones have been extensively proposed in the past to assess
reliability, meant as probability of not failing in operation Musa (1996), Currit
et al. (1986); Poore (1990); Selby et al. (1987); but all are instances of simple
sampling schemes that, even though provide unbiased estimates, require
a large number of test cases for a desired confidence, especially when few

residual faults are in the software (e.g., in critical systems).

241 TERMINOLOGY

This Section introduces the terminology adopted in the following. Testing a
program is the process of i) exercising it with different test cases, selected
from the set of all possible inputs according to a selection criterion, and
ii) observing the output, comparing it with the expected one such that,
if they are discordant, a failure is said to have occurred. For what said
previously, a deviation from the expectation regards also non-functional
quality attributes, such as reliability (e.g., value failure, crash) performance
(e.g., response time is greater than specified) or security (e.g., vulnerability
exploited). Inputs provoking failures are called failure-causing inputs or

failure points. When a failure occurs, a change is made to the program to

11

CcO

uDevOps

2.1. TERMINOLOGY

remove what is believed to be the cause of the failure, or “fault”.’ Since
there may be several possible changes able to avoid the failure, the fault
related to an observed failure is not uniquely defined. We thus rely on
the notion of failure, rather than that of fault, and borrow the concept of
failure region of the input space (as in, e.g., Frankl et al. (1998), Zachariah
and Rattihalli (2007)). A failure region is the set of failure points that is
eliminated by a program change aimed at removing the fault. An input point
t is characterized by a predicate: z; = 1 if the execution leads to a failure,

namely, it is a failure point; z; = 0 otherwise.

An operational profile is a quantitative characterization of how a
system will be used. It is built by assigning probability values to all input
cases representing the probability that each will occur in operation. Thus, it
can be thought as a probability distribution over the set of the input points
D. We denote this distribution with P, that assigns a probability p; to each
input ¢ € D. In operational testing, assuming a perfect estimate of the
operational profile, p; is also the probability that the input ¢ will be selected
during testing. But in the real world, the profile estimate is affected by an
error, and another probability distribution is actually used to select test

cases. We denote this distribution with P, and its probability values with p;.

A vulnerability is viewed as a fault for what said.

12

2.2. ASSUMPTIONS

2.2

CcO

uDevOps

ASSUMPTIONS

We do the following assumptions:

Each test case leads the software under test to failure or success; we
assume we are able to determine when a test is successful or not

(i.e., perfect oracle).

Test case runs are independent; namely, all the non-executed test
cases are admissible each time. The execution of a test case is
not constrained by the execution of some other test case before.
This affects the way in which a “test case” is defined, since, if the
assumption is not met, a set of tasks can be grouped together in a
single test case, so that at the end of the test case the system goes

back to the initial state Lv et al. (2014b).

The output of a test case is independent of the history of testing; in
other words, a failing test case is always such, independently from
the previously executed test cases (i.e., the failing behaviour is not

masked by the execution of some previous test cases).

If a test case exposes a failure, the debugging action is performed
without introducing new faults (perfect debugging) and all the
failure points of the corresponding failure region are corrected,
so that re-executing an input of that region does no longer cause

a failure. In any case (successful or not), the test case will be no

13

CcO

uDevOps

2.2. ASSUMPTIONS

longer repeated in the future (sampling without replacement).

5. The input domain D is decomposed into a set of m subdomains:
{Dy, Dy,. .., D;;}. The number of subdomains and the partitioning
criterion are decided by the tester. In general, there are several
ways in which a tester can partition the test suite, provided that
test cases in a partition have some properties in common (e.g.,
based on functional, structural, or profile criteria). These are usually
dependent on the information available to test designers and on
tester’s objective. The choice does not affect the proposed strategy,
which just assumes the presence of subdomains, but of course
different results can be obtained according to it. The effect of
different partitioning on results is out of the scope of this paper and

is left to future research.

For each subdomain, we define the probability of selecting a failure
point from D; as: ¢; = 6; ZteDi p:, where ZteDi p; is the probability of
selecting an input from D;, and 6, is the probability that an input selected
from D; is a failure point. Thus, the true value of the quality attribute of

interest for a given randomly selected input is computed as:
m
Q=1-0=1-) ¢ (2.1)
i=1

where @ is the operational failure probability. This is the typical derivation

done with reference to reliability () = R) in the literature Cotroneo et al.

14

CcO

uDevOps

2.3. THE ROLE OF AUXILIARY INFORMATION

(2016); we generalize to the other quality attribute, given the notion of failure
discussed above. In an entire execution with NV independent demands, the

estimation becomes:

Qn = QY (2.2)

2.3 THE ROLE OF AUXILIARY INFORMATION

The key to improve the efficiency of sampling, hence to get the estimate
with a high accuracy and few tests, is to use auxiliary variables. In general,
we do not know the value of the variable to estimate; but if know some
information that we guess is correlated with the variable of interest, than we
can exploit that variable in the sampling process. This is known as probability-

proportional-to-size (PPS) sampling.

Also, if we know that the variable of interest can be partitioned in
classes in which it is likely to have homogeneous values (e.g., equivalence
classes in testing), then we can exploit this knowledge to stratify the
population (i.e., the input domain) and sample from the classes (called
strata). This can improve efficiency too. We have assumed in the previous

Section that such partitioning is possible.

Our variable of interest is the probability of failure ¢, that is the
sum of ; over all partitions. So, we can exploit all what we know about
this variable. Since we are considering the acceptance testing stage in

Microservice-DevOps and the continuous feedback coming from the field,

15

CcO

uDevOps

2.3. THE ROLE OF AUXILIARY INFORMATION

we have access to a large amount of information that can be used to orient

the sampling strategy. For instance:

e If the tested units corresponds to equivalence classes in partition-
based testing, the partitioning criterion is itself an example of belief
of tester, who judges some ranges of values more prone to failure
while others are deemed correct. It is constitutive of partitioning to
assume that inputs within a partition have a homogeneous failing
behaviour, and the partitioning criterion establishes this assignment.
For instance, boundary values are usually expected to fail more
often than in-range values. A similar concept applies for defining
the “choices” within categories in category-partition testing Ostrand
and Balcer (1988). The idea is to exploit such a belief not only for
fault detection during development-time testing, but also for quality

assessment during acceptance testing.

e If the tested units corresponding to D); are components in a
component-based system, then the observed failure data during the
previous phases of testing, or from the field (hence from previous
releases), are a source of knowledge to exploit. In particular,
inter-failure times can be used to build software reliability growth
models (SRGMs) for the components under test, or other kinds of
models (e.g., machine learning models) to predict the failure of each

component/module or input partition.

16

CcO

uDevOps

2.3. THE ROLE OF AUXILIARY INFORMATION

e When the tested units are software modules, then results of module-
level testing (e.g., detected/corrected defects, level of coverage,
amount of testing or, generally, V&V effort) are informative about

their quality.

e Other examples of information contributing to form the tester’s
belief are discussed in several papers proposing Bayesian inference
to formalise and quantify the belief Neil et al. (2000); Singh et al.
(2001); Smidts et al. (2002), such as code characteristics (e.g.
complexity metrics are often used as predictor for defect proneness
by machine learning Catal and Diri (2009)), domain expert opinion,

characteristics of the testing and of development process.

Sampling-based testing uses this auxiliary information combined with
the operational profile expectation, whose estimate is readily available
from field data in a DevOps context, in an unequal probability sampling
design to select tests most impacting the failure probability. The sampling
design establishes which (combination of) sampling techniques, within the
family of probabilistic sampling, is better to use for the particular input
domain of interest. Thus, the specific algorithm will depend on: i) the input
space (inputs are modelled as 0/1 values, denoting correct/failing inputs,
respectively), and on ii) the information available about failure proneness
and profile. For instance, as for the input space: if the input domain can

be easily split in homogeneous subdomains (i.e., with low intra-group

17

CcO

uDevOps

2.3. THE ROLE OF AUXILIARY INFORMATION

variance) and so that the variance between subdomains (i.e., inter-group
variance) is high, then stratification with unequal sampling probability of
strata and with replacement (to allow multiple tests for each subdomain) is
a good sampling strategy. Instead, if stratification is not advisable, unequal
probability sampling of single inputs is preferred Lohr (2009). In such a
case, without-replacement selection is better, even though its mathematical
treatment is more complex, because it is known to be more efficient than
with-replacement schemes. Generally, unequal probability sampling is the
required underlying framework in all the cases, as it allows having selection
probabilities deviating from the operational profile (hence, integrating any
testing profile in the sampling strategy) while preserving unbiasedness and

improving efficiency.

In this project, we have defined several sources of information about
quality attributes that can be used. Figure 4.1 reports the information we
defined in WP2. This regards usage (i.e., profile) and failing behaviour as
mentioned, but also architectural and behavioural models that can help
identifying the dependencies between the modules and tell which module

requires more testing.

As explained in Deliverable D2.2, the learning engine takes data
gathered from monitoring and a specification of the decision (i.e., the SQA
objective) to pursue. Based on this, the proper learning algorithm is used,
with associated pre-processing steps when needed, and gives, as output,

the prediction supporting that decision.

18

2.3. THE ROLE OF AUXILIARY INFORMATION

Logs, Traces, Topology, Ticket/Issue Reposotitories, alerts...

User-level (e.g., response time, latency, throughput, #failures, ...), system-level (e.g., MS I/0, internal
errors/exception, resources such as CPU, memory, disk, power cons., network), static metrics (e.g.,
code features (e.g., churns), process metrics (e.g., git metrics)), ...

Architecture Behavioural

Profile models Architecture-based
| - Stateful (e.g., - Stateful (e.g, |
Data via DTMC) MRM, SPN, SRN) E.g., Communication E.g., inferred FSM,
- Stateless (e.g., - Stateless (e.g,. graph inference, 1/0 invariant in
via Bayesian RBD, FT) deployment infeence (e.g.,
inference) Black-box information Daikon.like tools)
Non-stochastic -e.g., SRGM, FT

Components/Nodes

Dependenciesl

WHAT TO LEARN:

Component/Node Quality Attribute (e.g., Expected
Failure Prob. (Reliability), Performance, Power ,...)

Dependencies-related parameters: e.g.,
transition probability in a DTMC model

Pre-processing
Homogeneous - E.g., dimensionality

Formatting reduction, normalization,
clustering, features ranking

Classification, Regression;
Time series forecasting;
Causal Inference

Fault avoidacne Fault tolerance Fault removal Fault/Failrue o} A
prediction act is

i Error detection & Deployment,
promely Deteetion ¥ Diagnosis, RCA (e.g., Defect prediction, test/resource
recone time series forecast allocation,

reconfiguration Ff PETEENER . 3
issues) configurations
Testing (fault detection,
prioritization)
Energy hotspots
detection

Figure 2.1. Context of use for the learning engine.

19

O

uDevOps

r Source

- Metrics (from D2.1)

Models

D2.2:
LEARNING ENGINE

Shall support
decisions
about:

CcO

uDevOps

2.3. THE ROLE OF AUXILIARY INFORMATION

The last box shows that such knowledge can support several decisions
(not only testing), although in this WP3 we care about testing. Some of
these decisions, such as defect prediction, performance/energy bottlenecks
detection, root cause analysis, will indirectly support testing: e.g., predicting
a module as more defective or diagnosing it as more frequent failure root

cause, suggests more testing for that module.

In this WP we focused the attention on: i) operational profile
information, ii) observed failure data about incorrect output, long response
times, security issues. These are learnt through ML models and used by the
sampling schemes we define in the next Section. The same algorithms can
be used with any quality-assessment task and with any variable of interest

(e.g., static metrics for defect prediction).

A final note about the objective of testing: so far we have described
everything as a test generation problem, in which we have to select inputs
from the whole input domain and use them as test cases. In the project, we
also face another problem, namely how to select or prioritize tests from a set
of existing test cases (i.e., a test suite) in order to augment the fault detection
(which is a different goal than quality-assessment testing, it is for quality-
improvement). This is a situation typical of DevOps cycles, where regression
testing is a pillar. Test selection & prioritization for quality improvement are
better dealt with machine learning models, as they are not amenable to be
formulated as sampling (there is no quantity to estimate). We used learning-

to-rank strategies for this, as explained in D2.2, for correctness issue. This is

20

CcO

uDevOps

2.3. THE ROLE OF AUXILIARY INFORMATION

particularly important for security testing. In fact, in that case, tests are sets
of attacks that try to exploit vulnerabilities, and often come with pre-defined
attempts to exploit the vulnerability. In such a case, the problem resembles
more tests selection & prioritization than tests generation - namely, which
vulnerability is worth to investigate first, which type of attack is worth to be

launched first.

21

CcO

uDevOps

3 ACCEPTANCE TESTING AS SAMPLING

341 OVERVIEW

This Section reports the sampling-based testing algorithms we use for
the acceptance testing stage (e.g., to check for the quality gates) in
a Microservice-DevOps context. These algorithms use the auxiliary
information defined in Section 2.1 to assess a quality attribute of interest.
We first present the algorithms we developed. Then, examples of application
for reliability and performance assessment of Microservice applications are

reported.

The objective of sampling-based testing is to provide an unbiased
estimate of quality attribute of interest () , denoted as Q A “good”
estimator is sought, namely an estimator that is unbiased and efficient (i.e.,

with variance as low as possible given T tests to run).

Assume a system can be represented, without loss of generality, as a

set of modules indicated with D, interacting to each other. In the context

22

CcO

uDevOps

3.1. OVERVIEW

of this project, the modules are microservices in a microservice architecture
(MSA). In general, they can be architectural components, or partitions of the

input domain.

The two main stages required for testing are:

o Test cases allocation, where the number of tests for each service
are decided. This could be done by several methods, such as:
giving more tests to bigger services; giving more tests to services
judged as more critical (by domain experts); using historical data
or design information about the expected defectiveness to spot
critical services (e.g., via defect prediction) or to allocate tests by
optimization models (e.g., Huang et al. (2002)Pietrantuono et al.
(2010)). Whatever the initial allocation is, it can be then adjusted
with time, especially in a DevOps context where continuouos
feedback can be helpful. Several strategies use the feedback over
iterations to change the allocation of tests to each module for the
next iteration Cotroneo et al. (2016); Pietrantuono et al. (2020a);
Pietrantuono and Russo (2016). The output of the allocation stage is
the assignment of a number of test cases to run to each service D;,

denoted as T;.

e The second stage is about input selection, where the algorithm(s)
derive the test inputs by selecting an input from domain D, of

the microservice ¢ under test. These will form the T} test cases

23

CcO

uDevOps

3.1. OVERVIEW

from domain D;. In the following, several selection techniques
are presented, whose applicability are a trade-off between the
knowledge that a tester could exploit to improve the input selection,
the technique performance, and its implementation complexity.
Note that the term “selection” refers to the input space; from the

testing point of view, this selection is a “generation” of test cases.’

All the techniques select test cases based on a more or less in-depth
knowledge of the operational profile. A profile P is defined as a probability
distribution where each input ¢ has an expected occurrence probability p;.
With respect to knowledge of P, the techniques will generally consider each
input either singularly or grouped by classes with similar characteristics
(e.g., all inputs of a functionality, inputs of an equivalence class, etc.).
To take the more general case, we consider an occurrence probability p;
assigned to each inputt € D. Thus, if no information is available at all about
expected occurrence of inputs, we have p, = 1/|D| (i.e., same probability
to all inputs). If a tester has information at (micro)service level, a p; value is
assigned to the entire domain D; assuming the within-domain distribution
being uniform with p; = p;/|D;|. If a tester distinguishes between classes
of inputs within D;, then different p, values are given to each class (and
uniform distribution within the class). Knowledge of the profile is initially
assumed to be exact, like in most related literature Cai et al. (2004), Cai et al.

(2008), Lv et al. (2014b), Cai (2002), but it is progressively updated with

Test selection is a different problem, where tests from an existing test suite need to be selected

24

CcO

uDevOps

3.1. OVERVIEW

observations coming from the monitoring, hence the assumption quickly
becomes non-impacting thanks to the availability of field observations in
the Microservice-DevOps context. The profile estimation updated is done
by a strategy we devloepd based discussed in the next Section. It could also

be done by ML models.

To recall the above notation: for each domain D;, we have: ¢; =
0; ZteDi i, Where ZtGDZ_ p; is the probability of selecting an input from D;,
and 6; is the probability that an input selected from D; is a failure point.
The quality attribute (e.g., reliability) for a randomly selected demand is:
Q=1-0=1->", ¢ where ¢ is the operational failure probability.
After N demands, it becomes: Qx = QY. The estimate of @ is computed

from domain-level estimates:

Q=1-) @&=1-> pi-b, (3.1)
i=1 i1

where p; = ZteDi ¢, While éi is the sought estimate of the probability that
an input selected from D; is a failure point. In the following, we can therefore
refer to the estimation of 0}- values. The variance of the estimator, which is
of interest to evaluate its efficiency, being the éi values independent of each

other, is:
V(Q) = sz V(6;)

(3.2)

25

CcO

uDevOps

3.2. ADAPTIVE ALLOCATION OF TEST CASES

3.2 ADAPTIVE ALLOCATION OF TEST CASES

Adaptiveness aims at periodically re-allocating tests to improve the estimate
efficiency in terms of variance. It iteratively assigns a subset of total test cases
(T") available at every iteration (e.g., at every release) to domains, giving
more tests to domains (e.g., to microservices or microservices’ equivalence
classes) with a bigger expected variance. At iteration k& = 0, a subset 7
of tests is distributed to the domains. As mentioned, we have used several
alternatives for this (e.g., Pietrantuono et al. (2020a), Cotroneo et al. (2016));
we assume the simplest one, assuming that no information is available, and

perform a size-proportional allocation?: TZ-(O) — 7). il A next iterations,

D
test cases are distributed by weighting the number of tests (7**1)) foreseen

A T(k“)wgk). In the following, we describe the

(

i

for iteration (k+1): TZ-(

%) and T*+1), A simple solution is to

(k) _ 1Dl
i [D

method implemented to determine w
keep on allocating tests proportionally to domains size, hence w
However, as the goal is to minimize the estimate’s variance, allocation needs
to be proportional not only to size, but also to variance. Assuming the costs
to select a test case across domains approximately equal, it can be shown

that the optimal allocation scheme is the Neyman allocation Lohr (2009),

2|n adaptive allocation, the number of samples at the first iteration (7'(?)) is only required to be much

smaller than 7" Sridharan and Namin (2010), in order to start the algorithm

26

CcO

uDevOps

3.2. ADAPTIVE ALLOCATION OF TEST CASES

where weights are proportional to size and standard deviation:

T+ _ i) | 0 _ ey DIVV0)® - pi

-7 (3.3)

' > DV (0;)® - p;

However, the true within-domain variances of 6; are unknown. Thus,

at each iteration, the estimates of V' (6;) have to be provided by the test
selection scheme adopted at domain-level (discussed in the next Section). To
implement a robust adaptation with respect to fluctuations of such variance
estimates, we do not directly use Equation 3.3, but an adaptive importance

sampling (AIS) algorithm.

Importance sampling aims at approximating the true distribution
of a variable of interest Fox (2003). Our true unknown distribution is the
best number of test cases for each domain that minimizes the variance of
reliability estimator. The algorithm represents the beliefs (i.e., hypotheses)
about this distribution by means of sets of “samples”. Each sample is
associated with a probability that the belief is true: at each iteration,
these probabilities are updated by examining some new samples of that
hypothesis, and a larger number of samples (i.e., test cases) are drawn
from hypotheses with a larger probability. The goal is to converge, in few

iterations, to the “true” best distribution of test cases.

To establish how the probability of each hypothesis is updated based
on new collected samples, an update rule is defined. Let us denote with
7(%) the probability vector representing, for each domain, the likelihoods

that testing from that domain contributes to minimizing the variance of the

27

CcO

uDevOps

3.2. ADAPTIVE ALLOCATION OF TEST CASES
(k)

estimator. This information is well represented by weights w, . Using the
variance estimates of 6, in lieu of true (unknown) variances in Equation 3.3,
the update rule of the probability vector 7(¥) is defined as follows:

=y (=) (L= aY) 0l (3.4)

The rule tends to assign progressively more tests to domains with

higher variance of the estimator, so as to diminish its impact on the
()

overall variance. Given the same weights w;"’, the increase is larger
for domains that had fewer resources at the previous iteration. The
smoothness of adaptiveness is further is determined by v € [0,1],
regulating how the algorithm considers past iterations’ results with
respect to current ones. The 7r§’f) values are normalized, since they are
probabilities (wgk) = (wg’“))/(zi@ wgk))). Starting from wgk), the bucket-
filling procedure reported in ? is used to distribute the tests to domains, so
as Ti(k+1) ~ Tl-(k)w(m - Tz_(k)@l(k)_

7

To determine the proper Ti(k) at each iteration, we consider the
adaptive implementation of importance sampling Fox (2003). Based on a
desired error and confidence, this variant tends to progressively reduce the
number of required samples as more information becomes available, so as

to approximate the sought distribution earlier. Accordingly:

~1
T+ = 2_1§X,2)_1,1—5 ~ p2_§{1 - 9(,;2—1) + 9(;)2—1)”21*‘5}3 (3.5)

where: £ is the error that we want to tolerate between the sampling-based

28

CcO

uDevOps

3.3. SELECTION OF TEST CASES

estimate and the true distribution; 1 — J is the confidence we want in this
approximation; p is the number of domains from which at least one test
case has been drawn in the k-th iteration; z;_s is the normal distribution
evaluated with significance level §.

The resulting number of Tl-(kﬂ)

test cases are run within each domain,
e.g., for each microservice, according to one of the techniques described in
the next Section: test results are in turn used to estimate the variances V' (6;),

hence allowing to update @; (and 7;) based on the new information.

3.3 SELECTION OF TEST CASES

We describe test selection techniques within domain D; of the i-th
Microservice by providing formulas to compute the failure rate estimator
éi (needed in Equation 3.1), its variance V(éi), and a correct estimator of
such variance V(@}) (needed in Equation 3.1 as well as in Equation 3.3 in
lieu of the unknown V(6;)). The algorithms are based on our previous
work ?. The following description starts with the simpler case where simple
random sampling is exploited to select tests, and then proceeds by refining
the sampling scheme to better exploit available information for efficiency
improvement. Hence, the below techniques require increasing pieces of
information about the program under test, and this is a possible additional

criterion to choose between them, besides efficiency and bias. All the

steps described in the following refer to a given iteration k; we omit the

29

CcO

uDevOps

3.3. SELECTION OF TEST CASES

superscript £ in all the Equations for readability of formulas (e.g., Tf is T;).

Also, we denote: |D;| = N;,.
3.3.1 SRSWR-based testing

This first technique makes no assumption about (i) which input or class of
inputs (e.g., equivalence class) is more prone to fail within a domain D;; ii)
what is the expected operational usage of (class of) inputs/functionalities.
Tester just has information at entity level, namely, p; value is assigned to the
entire domain D; assuming the within-domain distribution being uniform,
i.e., for each input ¢: p; = p;/N;. The simplest form, which is the common
one in the existing literature (e.g., Cai et al. (2008), Lv et al. (2014a), Cai et al.
(2004), Cai (2002), Lv et al. (2014b)), allows the same input ¢ to be selected
more times, i.e., a simple random sampling with replacement (SRSWR)
scheme. Test outcomes are a series of independent Bernoulli random
variables z;; such that z;; = 1 if the execution leads to a failure, z;; = 0
otherwise. Probability that z; ; = 1 corresponds to proportion: 6; = #
An unbiased estimator of 6; is the observed proportion of failure points over

the number of trials 7T;:

T
) _ M (3.6)

ISRSWR T
(A

Accordingly, having assumed independent variables, the variance of

30

CcO

uDevOps

3.3. SELECTION OF TEST CASES

the 6 estimator is:

v 0;(1 —6,;)

iSRSWR) = T, (37)

being the numerator of Eq. 3.6 a binomial random variable. An unbiased

A ~

estimator of V' (0;,,.,,») (i-e., such that E[V] =V is:
- 0,16y
V(eiSRSWR) - ﬁ (3.8)

using the Bessel-corrected version as unbiased estimator of a sample
variance V: V = ﬁv (n being the sample size). Although SRSWR
keeps the mathematical treatment relatively simple, it is unable to exploit
additional information a tester might have. The following techniques

improve the efficiency in terms of variance.

3.3.2 SRSWOR-based testing

This technique still makes no assumption about knowing failure proneness
of (classes of) inputs/functionalities or their operational profile. Differently
from the previous one, this technique uses a sampling without replacement
(SRSWOR), namely, the same test case is not selected twice. This technique
is expected to be more efficient in terms of estimator’s variance, as it avoids
sampling an input twice. The proportion estimator is still obtained as ratio
of observed failure points over tests executed:

T;) .
é . Zt:l Zit = p; - ez (39)

ISRSWOR — T. (
(2

Variance of the estimator, é, is different. Being a without-replacement

scheme, the population units from which to sample are less and less. Thus,

31

CcO

uDevOps

3.3. SELECTION OF TEST CASES

observations are not really independent. At the first draw, a test case ¢ of 7;
tests to run is drawn out of N; units; at the second draw, another test case
from the remaining 7; — 1 is drawn from a population of N; — 1 units, and
so on. Defining a random variable 7; = 1 if unit 7 is in the sample, 7; = 0

Zit

. A T, . .
otherwise, 6; can be expressed as > ;' m Since m; are 0/1 variables,

Ti.
Elm] = E[r}] = T,/Ni, and V(m) = Elrj] — Elm]* = $(1 -).
Moreover: E[mmy] = Py = 1lm = 1)P(m = 1) = (]Tvi:ll)(%) -

namely, if we know that test ¢ is in the sample, we do have a small amount
of information about whether test ¢’ is in the sample, reflected in the
conditional probability P(my = 1|m; = 1). Thus covariance is not null and:
Cov(my, mp) = Elmmy] — Bl Elmy] = —ﬁ(l — %)(%) Given these
preliminaries, and using properties of covariance:

A N
V<02'SRSWOR) = T%?V(thl ﬂ-tzi,t) =
22 3 oty Zis 2 Cov(memy)) = (3.10)

%[thl Zi%tv(ﬂ-t) + Zt:1 Zt/# Zit Zi,t’COU(WtWt')]
Using variance and covariance of 7;, mp and taking out of the summation:

iSRSWOR) -

V(0

) : N; N; N;
%2%(1 - %)[Zt:ll Zz'Q,t - ﬁ Do Zt’;ét Zig, Zip] =

k3

(3.11)

%%(1 - %)(Ni(]\lfi_l))[Ni p Ziz,t — (il 7)) =

N=T; N; 0i(1-6;) _ N;—T; 0:(1-6;)
N; N;—1 T; - N;—1 T;

32

CcO

uDevOps

3.3. SELECTION OF TEST CASES

Hence, with respect to the SRSWR case, variance is modified by adding

what is called the finite population correction factor (NN;T) accounting for
the fact that the population is finite, and using the N],V_il factor to make it
unbiased.
An unbiased estimator of V (0;,,....,,.) is:
o7 N; — T; 0,(1 — 6;)
V(GiSRSWOR) - N, T —1 (3.12)
since: o o
E[NZ-JV—iTi ng:fz)] _ NZN—lTLE[Gz%:fz)%] _
(3.13)
Ni=T; 0:(1=0)N; 1 N;=T; 0:(1—-65)
N; N—1 T; Ni-1 T
using the fact that % unbiasedly estimates %

Assuming 7T; > 1, SRSWOR is expected to be more efficient than

SRSWR, since its variance is expected to be smaller:
V(0
V<éiSRSWOR
Since both SRSWR- and SRSWOR-based testing make the same assumptions

SRSWR)) — N — T Z 1 (314)

about the knowledge available to tester, the latter is preferred: we use
SRSWOR in the following for efficiency comparison, neglecting the SRSWR

case.
3.3.3 Stratified SRS testing

The above two strategies can be improved if a tester has knowledge about

which classes of inputs within D, are expected to have a common behaviour,

33

CcO

uDevOps

3.3. SELECTION OF TEST CASES

i.e., by partitioning D; (e.g., equivalence classes for the domain D, of
microservice 7). Regardless partitioning criteria, we denote as C; j, the h-th

class within domain ¢, and 1V; ,, the number of elements within C; j,.

If such information is available, stratified sampling (S-SRS) can be used
to instead of SRSWOR and SRSWR. In S-SRS testing, the proportion of failure

points is estimated by combining the proportions obtained in each class:
Zs SRS Z N; hgz h (3.15)

where M; is the number of classes and HAM the estimate obtained by Equation
3.9 for each class. Since the selection from classes is independent, variance

of the estimator is the linear combination of within-class variances:

V ts— SRS N2 Z ZhSRSWOR) (3.16)

Similarly, its unbiased estimator is:

M;

15— SRS - Z zhv ZhSRsWOR) (3-17)

lh:

~

V(0

using Equation 3.11 and Equation 3.12 in the two cases.

A task required by S-SRS is the assignment of test cases to classes. This
is the same problem we faced at domain-level, and assume, without loss of

generality, the same solution here: a “proportional allocation” in the first

ih

stage (i.e.,, T}, = J\va 1), and “optimal Neyman allocation” (Equation 3.3) in

the next stages when an estimate of variances becomes available.

34

CcO

uDevOps

3.3. SELECTION OF TEST CASES

3.3.4 PPS-based testing

Besides information that allows partitioning of D;, let us assume to have an
estimate of the operational profile at class-level, along with some auxiliary
indication about the failure proneness of a class with respect to the others.
As discussed, the latter should be a driving principle of partitioning, wherein
classes of inputs are separated with respect to their supposed failing
behaviour. There are several methods to support the tester’s intuition with
guantitative figures about which functionality or class of inputs is more
likely to fail, especially considering that assessment is done at the end of
the development process, and much information is available. For instance,
the amount of testing, inspection or, generally, quality assurance activities
that a microservice received or the achieved code coverage suggest where
a high effort was devoted to assure few residual faults; historical failure
data, domain expert opinion, and other evidences can be used for such
an assessment as previously discussed. These all can contribute to have a
relative assessment of classes with higher expected failure rate3. However
is assessed, we call it failure likelihood, denoted as ¥€[0,1]. The two
techniques explained in this Section just assume a rough proportionality of

the auxiliary information ¢ with the true (unknown) failure rate. Note that

SFailure rate of a class is meant as probability of failing given that an input is selected from that class; the
actual failure probability depends, of course, not only on the faults within the class, but also on the probability
of selecting an input from that class in operation, namely on the operational profile. Thus, this information is

later combined with the class-level operational profile

35

CcO

uDevOps

3.3. SELECTION OF TEST CASES

this knowledge is just supposed to be better than knowing nothing about

the relative difference among failure rates.

In such a scenario, we change the problem formulation. Let us
consider the quantity to estimate being not the proportion of failure points,
but the total: ¢; = 3, pinblin = Dopiy HE DienZie = Doien, Piiis
where p; ; is the probability of selecting an input from class C;;, and:
pt = pin/Nin because of equal selection probability within classes?.
We define the auxiliary variable z associated with each input ¢ such
that: z;; = p;, where 9, is the failure likelihood of the class. The
corresponding probability of selection of each input point ¢ as test case is:
T = ﬁ This is called proportional to size (PPS) selection Lohr (2009),
where the “size” is the variable z. If no knowledge about failure likelihood

is available, the method still works, but the higher the correlation between

x and ; the higher the efficiency.

Given this general scheme, selection of test cases can be done, again,
with or without replacement. Since N, , and p; ;, values are known, we need
to estimate the total number of failure point Z; = >, z;; to get 9} and
©;. In case of with-replacement selection, the estimator is the sample mean

of observed values rescaled by the inverse of their selection probability ,

5 T % . . .
namely: Z; = L § © 2t known as the Hansen-Hurwitz estimator. Variance
T; t=1 m

4Note that unequal probability of selection could be seamlessly used in the method formulation, but the

information on the operational profile is rarely available at such fine level of granularity.

36

CcO

uDevOps

3.3. SELECTION OF TEST CASES

is:
1 & 1 (& 22
V(Z)=E[(Z; — Z))*] = _[Z wt(ﬂﬂ — 7)Y = = (Z Wﬂ — ZE) (3.18)
t =1 t i \t=1 "t

With respect to the simple random sampling counterpart (SRSWR), this is
a generalization, since in SRSWR 7; are equal to 1/N;°. If we consider the
corresponding without-replacement case (namely, PPS sampling without
replacement), we expect to obtain better variance than Equation 3.18.

Hence, we now consider the RHC scheme to estimate Z;.
3.3.5 PPS-RHC technique

This uses the Rao, Hartley and Cochran (RHC) sampling for selecting tests

according to PPS Rao et al. (1962). It acts as follows:

1. Giventhe 7] test cases to execute in D;, divide randomly the V; units
of the population into ¢ = T groups, by selecting G; inputs with
a SRSWOR for the first group, then (G5 inputs out of the remaining
(N; — (1) for the second, and so on. This will lead to g groups of
size G, Go, ..., G, with >°7_ G, = N,. The group size is arbitrary,
but we select Gy = Gy = --- = G, = N;/T;, as this minimizes the

variance Rao et al. (1962).

5Note that, the case of proportions @ of Equation 3.7 for SRSWR is similar, since (1 — 0) = 6 — 6% =
S zig/Ni— >, 28 /NF =32, 28 /Ni — 3, 22, /N2, since z; ; = =7, being z; ; a dihcotomic (0/1) variable.
Since proportions are “means” of the variable z; ;, while here we have a total, Equation 3.7 multiplied by N,?

yields the variance of the total’s estimator Z- that is the same as Equation 3.18 with 7; = 1/N;

37

CcO

uDevOps

3.3. SELECTION OF TEST CASES

2. One test case is then drawn by taking an input ¢ in each of these g
groups independently and with a probability proportional to size -

in our case, according to 7; values.

3. Denote with 7, the probability associated with the ¢-th unit in the
r-th group, and with ¢, = ZteGr 7, the sum in the r-th group. An

unbiased estimator of Z; is:

g
2, =3 Tt (3.19)
— T /g
with z;; = 1iftis afailure point, o otherwise. The suffixes 1,2, ..., r

denote the g test cases selected from the g groups separately. This

leads to: 0

irsc % which is the sought proportion of failure points.

The estimator is unbiased since E[Z] = ElEg[Z] =E,[Z;] = Z;, where E; is the
expectation for a given split and E; the expectation over all possible splits
into T} groups of the chosen sizes. Variance of ZZ- is derived by observing that,
under unbiasedness, V(ZZ) = Eﬂ@(Z) where V5 is the variance within a
split:

N; 2

5 2, G- N Zit 9
V(Zinne) = NV D) > - Z (3.20)

t=1
with > denoting the sum over the g = T; groups. Its unbiased estimator is

derived in Rao et al. (1962) is:

T (7 ZTG'IQ‘_NZ : Zi,r 5 \9
ViZigne) = m qu(ﬂ_r —Zi)" |- (3.21)
T o \r=1
Choosing G; = Gy = --- = G, = N;/T;, we have:
S,GE-N; _ Ty(N/T)2-N; _ 1 (Ni—T))
NN,—D) . Ny (Ni-1) T, (Ni—1) (3.22)

38

CcO

uDevOps

3.3. SELECTION OF TEST CASES

Hence:

) LN=T) (SRE
VZigno) = TN —1) (Z Pt (3.23)

t=1

which clearly less than the with-replacement case in Equation 3.18. Thus

the without-replacement case is better, in terms of efficiency, than the with-

replacement case by a factor ((]]V\;':%). The sought variance of éiRHC and its
estimator are:
V(éiRHc) = %?) V(éiRHC) = %?) (3.24)

Let us compare RHC against the SRSWOR case (denoted, for brevity, SRS).

Ny
From Equation 3.11, writing 0, = % and recalling that z;; = z7,, being

2+ a 0/1variable), we have that:

A ; LN~ T,
V(ZiSRs) = sz(eiSRS) = Tﬁ (Z Nizi%t - Z’LQ) (3.25)
! t

Therefore, RHC (Equation 3.23) is more efficient if this condition is verified:

N; 52 N;
it 2
— < N;z: .26
g - g Ziy (3.26)
t=1 t=1
Considering that 7, = ﬁ =% = v4,and Z; = Z;N; (X and Z are the
¢ i, i i4Vq

population means), the RHC variance becomes:

N;
V(Zi) = <N —T) X TZ % :m)2 (3.27)

tRHC (

Expanding the expression and recalling that Cov(X, ZYQ) = F[X, ZYQ] —

E[ZYQ]E[X], condition in Equation 3.26 is verified if and only if C'ov (X, 272) >
0. But in PPS sampling, X is supposed to be roughly proportional to Z, thus

their covariance should be at least positive. RHC turns out to be worse than

39

CcO

uDevOps

3.3. SELECTION OF TEST CASES

SRSWR only in the case that auxiliary information is negatively correlated
with the variable to estimate, which is a worse situation than a complete
absence of knowledge about more or less failure-prone classes (i.e.,
knowledge is even misleading). In practice, an even partial knowledge (e.g.,
inputs from boundary-value regions more likely to fail than others) can
suffice to distinguish more failure-prone classes; without such knowledge,

partition testing is not convenient from the assessment point of view.
3.3.6 Adaptive sampling technique

Network structure

With this strategy, the test case space is represented as a network where
each node is a module D; and links between nodes represent a dependency
between the tester’s beliefs about the failure probability of the linked
services. The idea is that the failure probability assigned to a service may
affect the belief about the failure probability of another service (e.g., if there

is a strong similarity between the two, according to some similarity metric).

Given the failure probability P(i)=f; and P(j)=fj of two services,
the link is intended to capture the joint belief that a test case from both
modules will fail. To this aim, each link between a pair of nodes < 7,5 >
is associated with a weight w; ; defined as the joint probability of failure
of tand j: P(i N j) = P(ilj) - P(j). The conditional probability of failure
P(i|y) is the probability for a service i to fail conditioned on the fact that

40

CcO

uDevOps

3.3. SELECTION OF TEST CASES

a failure is observed in the j-th service. P(i|j) depends on the distance in
an inversely proportional way: the smaller the distance, the more similar
the two services, and the bigger the conditional probability of failure. We
represent this relation by: F(d) = 1, hence: P(i|j) = P(i)2 with d > 0,
but other distance functions can be conceived. Consequently, weights are
defined as: w; ; = f]fzé and, since they are based on failure probabilities,

they can be also updated at run time by monitoring data.

Test generation algorithm

The algorithm for test cases generation is encoded as an adaptive sampling
design on the defined network structure, in which the generation of the
next test case depends on the outcome of the previous ones. Given a testing
budget in terms of number of test cases to run, the goal is to derive tests
contributing more to an efficient (i.e., low variance) unbiased estimate.
Sampling adaptivity is a feature that allows spotting rare and clustered units
in a population so as to improve the efficiency of the estimation Lohr (2009)
- this makes such a type of sampling suitable for testing problems, especially
in late development and/or operational phase, since failing demands are
relatively rare with respect to all the demands space and are clustered. we
generate one test case at each step. In a given step, the algorithm aims
at selecting the test frame with higher chance of having failing demands.

The exploited design is the adaptive web sampling defined by Thompson

41

CcO

uDevOps

3.3. SELECTION OF TEST CASES

for survey sampling problems Horvitz and Thompson (1952). Within the
selected test frame, a test cases is generated by drawing a demand according
to a uniform distribution - namely, each demand with equal probability of

being selected.

Specifically, at the k-th step, we combine two techniques (i.e., two
samplers): a weight-based sampler and a simple random sampler to select
the next test frame. The weight-based sampler (WBS) follows the links
between frames, in order to identify possible clusters of failing demands.
This depth exploration, useful when a potential “cluster” of failing demands
is found, is balanced with the simple random sampler (SRS) for a breadth
exploration of the test frame space, useful to escape from unproductive
local searches. At each step k, the next test frame is selected by a mixture

distribution according to the following equation:

waki 1
Qi =r——+(1—1)—7— (3.28)
‘ wak+ ()N - nsk

where:
e ¢, is the probability to select test frame i;
e N:isthe total number of test frames;

e 5. isthe current sample, namely the set of all selected test frames up

to step k;

e 1, isthe size of the current sample sy;

42

CcO

uDevOps

3.3. SELECTION OF TEST CASES

e q; isthe active set, which is a subset of s, along with the information

on the outgoing links;

® qy,isthe set of the outgoing links from test frame i to test frames not

in the current sample s;;

® Wy, = Y icq, Wijis the total of weights of links outgoings from the

active set;

wak-‘r - Zieak,jes’k wlv.]’

e rbetweenoand1determines the probability to use the weight-based

sampler or the random sampler.

The selection of the first test frame is done by SRS, and the active set
is updated. Then, at each iteration, if there are no outgoing links from the
active set (i.e., no link with a weight greater than 0), the SRS is preferred, so
as to explore other regions of the test frame space. Otherwise, the selection
of the sampler is dependent on . When WBS is used, the selection is done
proportionally to the weights - first term of Eq. 3.46. Such a disproportional
selection is then counterbalanced in the estimator preserving unbiasedness.
When SRS is used, the not-yet-selected test frames have equal selection

probability® - second term of Eq. 3.46. The selected test frame is added to

%The scheme can be either with- or without-replacement, with few changes in the estimator Horvitz and

1

Thompson (1952); Eq. 3.46 is the without-replacement version, the with-replacement variant replaces 5—-
Sk

a1
with -

43

CcO

uDevOps

3.3. SELECTION OF TEST CASES

the active set. All is repeated until the testing budget is over.
3.37 Estimation

After testing, the estimation is carried out. Let us consider the quality
attribute to estimate, for instance reliability R: R =1-> .2, = 1-> . p; fi,
where z; is the probability that a test case from 7 is selected and fails. During
testing, results in terms of failed/correct test cases are collected. Let us
denote with y;, the observed outcome of a test case ¢ taken from test
frame ¢, y; ,=0/1. In the general case, in which some failure data for test
frame ¢ is available from the field, the estimate of f; is the updated ratio

of the number of failing over executed demands with inputs taken from

= fi-nﬁZl’L"o Yit

=0, where n; is the number of demands with an

test frame :: f;
input from test frame ¢ observed during operation and m; is the number of
demands taken from test frame i during testing (i.e., test cases). When no
data is observed for a test frame during operation, the estimate becomes:
fi' = # Additionally, in a without-replacement scenario, which can be
preferred under a scarce budget, m; = 1 and fz/ = 0/1. The Thompson
estimator is tailored for our assessment problem, whose idea is to take the

average of the (SRS or WBS) estimators obtained at each step. The total

failure probability ® is unbiasedly estimated as:
1,
d=—(NT R .2
~(N; +;Z) (3.29)

where:

44

CcO

uDevOps

3.4. ESTIAMTING THE OPERATIONAL PROFILE

Nfi' is the total estimator at the first step £ = 0 (the first observation taken
by the SRS);

z; is the total estimator obtained at step £ = ¢, and

Al

. s Ti N . ¢ %°
Zj = Zjesk. Lj + Qki Zjesk pJfJ + Qi ’

n is the number of executed test cases;

N is the total number of test frames.

3.4 ESTIAMTING THE OPERATIONAL PROFILE

In the above techniques, we have assumed to be able to estiamte the
operational prifle faithfully, thanks to the availability of data in Microservice-
DevOps context. In the following, we summarize the work done to define
a framework for operational profile estimation from data, published in
Pietrantuono et al. (2020a). The method is with reference to reliability,
although can be generalized as per the above discussion on other quality

attributes whose estimation depends on the operational profile.

3.441 Software operational profile

Consider a software service, whose inputs are requests made to the service

through its API. Denote with prob(d) the probability that input d € D is

45

CcO

uDevOps

3.4. ESTIAMTING THE OPERATIONAL PROFILE

submitted to software for processing ’

Assume to have n non-overlapping partitions Cai et al. (2008),
S={S1,...,S,}, with the corresponding domains: D={D;,...,D,} and
D,ND; = 0 | i # j. In this case, the operational profile is often defined in

two stages:

e A probability distribution is defined on the set of partitions S, which
defines the probability prob(d, € D;) - denoted with P; - of selecting

at random an input d, from partition’s domain D;:

Piprob(d, € S;) = Zprob(d) (i=1,...,n). (3.30)
deS;

e The conditional probabilities p(d | d € D;) of selecting input d from
within partition’s domain D, can be expressed as:
B prob(d)

prob(d | d € D;) = 5 (i=1,...,n). (3.31)

Note that the probabilities (3.30) and (3.31) are defined over different
domains: the former over the set of partitions (we refer to it as operational
profile on partitions, OPP); the latter over the inputs of a partition
(operational profile within partitions). We explicitly point out that the
n probabilities P;, summing up to 1 by their nature, have (n-1) degrees
of freedom, i.e., (n-1) partition probabilities can be defined so that

S~ 'P; < 1, and the last one is given by P, = 1 — 3.7 P

7Selecting an input from the input space D and submitting it to the service corresponds to issue a request

to the service through its API; thus, “Input” and “request” are used as synonymous in the following.

46

CcO

uDevOps

3.4. ESTIAMTING THE OPERATIONAL PROFILE

3.4.2 Dealing with profile uncertainty

The probabilities (3.30) and (3.31) capture the aleatory uncertainty about
the likelihood of an input being selected at random from the input space.
In principle they are estimable with an arbitrary accuracy: it would suffice
to observe software in operation for unlimited period of time. If this were

possible, then these probabilities will be known with certainty.

Unlimited observations of software in operation cannot be afforded
since D is, in general, very large. While with limited observations one might
be able to estimate quite accurately the partition probabilities P;, precisely
estimating the conditional probabilities prob(d | d € D;) for every single
input is infeasible. The very idea of partitioning D and having a much smaller
number of partitions than that of inputs is motivated by the desire for a

coarser model for the OP.

Infeasibility of estimating prob(d | d € D;) can be dealt with by
making additional assumptions. Finding plausible assumptions is difficult and
instead convenient assumptions are often made in practice, which may be
incorrect. One such assumption is that all inputs of a partition are equally
likely. Another one is that conditional probabilities prob(d | d € D;) are not
affected by a change of the likelihoods of partitions. In this paper we adopt
the latter assumption, i.e. that the operational profile changes only affect

the probabilities of partitions.
Given a limited knowledge about the true OP (e.g., due to limited

47

CcO

uDevOps

3.4. ESTIAMTING THE OPERATIONAL PROFILE

observations of software in operation), the estimates of probabilities
(1) and (2) are subject to epistemic uncertainty. We focus on epistemic
uncertainty of the probabilities of partitions (OPP), which are treated as
random variables with their corresponding distributions. We apply Bayesian
inference to update the epistemic uncertainty about OPP and discuss

practical implications.

3.4.3 Reliability modeling framework

We assume, in line with the literature Cai et al. (2008); Frankl et al. (1998);
Lv et al. (2014b), that reliability is expressed as the probability of not failing
on a randomly chosen input d, € D. Let F be a random variable (r.v.) that
represents this probability. The service reliability then can be expressed via

therv R =1—- F.

Let F; be the r.v. representing the probability of service failure on an
input d, selected from partition’s domain D;. Assuming that the profile on
partitions does not affect the likelihood of the inputs within partitions, each
conditional probability F; is suitably represented as a r.v. with pdf fr,(x). We
assume that Beta distribution with shape parameters a;, b; - Beta(a;; b;) is
appropriate for F;, since it offers flexibility and simplifies Bayesian inference,
as is detailed below. The expected value of each F; with Beta distribution is

Albert and Denis (2012):

48

CcO

uDevOps

3.4. ESTIAMTING THE OPERATIONAL PROFILE

Consider the case that OPP is known with certainty, i.e., the values
P,=P,, ..., P,=P, are known constants. In this case, the probability of failure
on an input d, selected from D according to that profile is a weighted sum of

the n conditional F;, the weights being the known probabilities Py, . .., Py:

F=YP-F. EF=). P E[F] (3.33)
i=1 =1

Let us further assume that the n conditional F; are independently
distributed random variables. This is a plausible assumption in those
cases when an assessor is not going to change the belief (i.e., epistemic
uncertainty) associated with F; if (s)he sees evidence of poor/good
conditional probability of failure in some of the other partitions. We
observe that the product P, - F; in Equation (3.33) is itself a random
variable. Denoting with f;’;(x) its marginal distribution,® the pdf of F; can

be expressed as a convolution:

frl@|PL=P, .., Po=P,) = fr(z)® @& 7 (2). (3.34)

We can now remove the assumption that the profile is known
with certainty (captured by P, = P,,.., P, = P,). Since partition
probabilities are dependent, following Adams (1996) we model the
epistemic uncertainty about OPP using a multivariate distribution, namely
the Dirichlet distribution, D(ay, ..., a;,), with parameters (ay, ..., a;,) for n

variates with (n-1) degrees of freedom, defined by Albert and Denis (2012):

8This distribution can be trivially derived from fz, (z).

49

CcO

uDevOps

3.4. ESTIAMTING THE OPERATIONAL PROFILE

IPepa (D1 s D) = % <H P?”) (1 - ZI%)

=1

(3.35)

where A = >"" | «;, and I'() is the Gamma function.

The marginal distribution of each P; variate is a Beta distribution with
shape parameters («;, A-«;), Beta(o;, A-c;) [9]. The moments of the P;

variates are given by Albert and Denis (2012):

:O[Z(A—Oél)
A2 (1+ A)’

= m, J #i. (3.37)

Var(P;) Covar(P;, P;)

Using the formula of the total probability, Equation (3.34) becomes:

ff(x) = ff(x ’ Pl> "'apn)fpl 'Pn(pla 7pn)dp1 .- dpn
(3.38)

Equation (3.38) provides the marginal distribution of the service
probability of failure, which accounts for the epistemic uncertainty related

to the profile and the n conditional probabilities of failure, F;.

The marginal distribution of F given by Equation (3.38) can be used
to compute various metrics of interest for the service under study. One can

compute the expected value (and other moments) of the service probability

50

CcO

uDevOps

3.4. ESTIAMTING THE OPERATIONAL PROFILE

of failure, hence the expected value of the service reliability R, which are

given by: n
E[F) =Y E[P)-E[F], E[R]=1- E[F]. (3.39)

Moreover, one can compute the risk that the true probability of failure
can turn out to be unacceptably high (i.e. exceed a given threshold). This
risk is represented by the tail of the distribution of the service probability of
failure: !
prob(F > T) :/T fr(x)dx. (3.40)
Another question of interest is knowing the likelihood of surviving the

next M input requests without a failure. This can be obtained as:

prob(no failure in next M inputs) = fol(l —)M . fr(z)d. (3.41)

The above expressions may be computed from F, which in turn
depends on the data observed in operation: i) the number of inputs
processed correctly and incorrectly in partitions - these will be used
to update the uncertainty about conditional probabilities of failure in
partitions, fz (x); ii) the number of inputs selected from each partition,
to update the uncertainty about the partition probabilities, captured by
D(aq, ..., ap).

Application scenarios

We envisage two important circumstances of interest:

o1

3.4. ESTIAMTING THE OPERATIONAL PROFILE

CcO

uDevOps

The operational profile is fixed. In this case the epistemic uncertainty
about the OP will diminish as more and more observations come
from monitoring the service in use. The distributions of the
conditional probabilities of failure in partitions (F;), too, will become
narrower and narrower as more observations are collected, and
asymptotically their whole mass will be concentrated in a single
point. This asymptotic case may require observations much longer
than one can afford prior to deployment. Thus, we foresee the

method to be useful in the initial period after deployment.

The operational profile and/or the service itself is subject to change
(e.g., due to new functionalities, which may affect the way the
service is used). In this case, one can monitor the service behavior
for possible changes of the OP on partitions and of the F;, and
re-compute the service reliability and other metrics of interest,
like those of Equations (3.40) and (3.41). The asymptotic case for
the stable profile outlined above may be simply unattainable due
to frequent changes in the case of a variable profile. Hence, one
may wish to discard “old” observations, if the current profile differs
significantly from the past. For such circumstances we define a
procedure to capture the relevance of the observations in judging
the operational profile, where recent observations are given a higher

weight than those reflecting the profile in the more distant past.

52

CcO

uDevOps

3.4. ESTIAMTING THE OPERATIONAL PROFILE

Since the Microservice-DevOps context is more likely interested by this
second case, we herefater report only the variable-profile case. For details

about the stable profile, see our paper Pietrantuono et al. (2020a).

3.4.4 Estimation of variable profile

In case the OP changes over time, estimates of the service reliability, which
are accurate yet promptly reactive to changes, can be made using a range of
schemes, depending on how the history of observations in operation is taken
into account when updating the Dirichlet distribution. In the case of “small”
changes, accounting in the prior for the entire history might be acceptable
Adams (1996). In the case of significant and rapid profile changes, discarding
the possibly irrelevant history and re-starting with “ignorance” might be
preferable. Cases may also be envisaged, whereby accounting in the prior
only for the very recent history might be best. Within this range of schemes
- from keeping all past observations in the prior to discarding them all - we
propose an iterative method to chose the prior best suited for the pace of

change.

We propose to run several Bayesian models in parallel, and to select
for reliability predictions the model which provides the most accurate
prediction of the operational profile at the time a prediction is made. The
candidates are all Dirichlet models, using various history lengths. To this

aim, we divide the history of observations into iterations. A candidate

53

CcO

uDevOps

3.4. ESTIAMTING THE OPERATIONAL PROFILE

model, M, will account for the history up to h previous iterations, with
h = 1,...,.K, K being the maximum number of past iterations to consider.
With this approach, each candidate prior remains a Dirichlet distribution,
allowing for analytic inference (based on the conjugate property of Dirichlet

and the multinomial likelihood of the observations). Specifically:

e At iteration ¢, Ny,,...,IN,,; requests - with Ny ;+.+N, ;=N; - are
observed for partitions Si, ..., S, respectively, and the profile is

updated.

e K Dirichlet distributions are computed, using the requests observed
in the last iteration, and considering the history up to the previous

h = K iterations. At iteration i (i > K), we have K models:
My = fp,..p,(P1,sPn) = D(a1,i—n + Nigy o ooy nimn + Npi) (3.42)

where h=1 to K. The parameters ay;_p,...,a, ;—5 account for the
cumulative number of observations per partition between iterations
(2-h) and 7. These models consider histories of various lengths,
representing the observations more or less well depending on when

and to what extent the profile changed.

e These candidate models are then pair-wise compared by means of
posterior odds on the posterior Dirichlet distributions only. If we are
indifferent between the candidate prior beliefs in the OP, using the
Bayes Factor B is the same as using the posterior odds, which is equal

to the likelihood ratio. For instance, with two candidate models, M;

54

CcO

uDevOps

3.4. ESTIAMTING THE OPERATIONAL PROFILE

and M5, for the prior of the operational profiles, the posterior odds

can be expressed as:

P(M;|data) _ P(data|My) = P(M1) - B. [pT’iO’f’ OddS] (343)

posterior odds = P(Ms|data) — P(data|Ma) =~ P(Ma)

where data represents the requests V ;,...,/V,, ; observed in the last
iteration. Given the same prior, prior(M;) = prior(Ms), hence prior
odds= 1, model M is preferred if the Bayes factor is greater than
1, meaning that it describes better the observed data (i.e., how the

observed requests are split among partitions).

Comparing models allows addressing a well-known problem in
Bayesian inference, often left to intuition, namely how long the history
needs to be (i.e., how to choose K) for learning properly. Indeed, this can
bring to scalability problems, but the estimate’s accuracy vs computational
cost trade-off is decided by the user depending on the needs/resources.
The most expensive choice is to compare, at every iteration, all the models
and take the best one. While the least expensive choice is to compare
only two models and only at “relevant” iterations. A practical compromise
strategy is to compare the model considering only the observations in the
last iterations (i.e., without history) against a model with either a) all the
observations from the beginning (K = i), or b) the observations up to a
given number of past iterations (K < i) deemed to be relevant for the
problem under study, or ¢) up to known/hypothesised change points of the

process (for instance, if the tester has reasons to think that the operational

55

CcO

uDevOps

3.5. RELIABILITY TESTING

profile has changed - e.g., a new functionality is released - or a change is

detected through other techniques).

This method has been shown to work well to follow the operational
profile change. Examples and case studies of this approach can be found in

our paper Pietrantuono et al. (2020a).

3.5 RELIABILITY TESTING

We have developed and applied some of the above sampling schemes for
testing RESTful web services and Microservices. We hereafter report the
application of an adaptive sampling algorithms for reliability-assessment
testing, and of a with-replacement sampling according to the state-based

operational profile for performance and reliability testing of microservices.

We first consider the problem of assessing quantitatively the reliability
of an MSA application in use. This is a great concern for companies migrating
towards MSA. While MSA is expected to favor seamless management of
microservices’ failures via fault tolerance means, what finally matters is the
reliability of the overall MSA actually observed during operation (operational
reliability). A microservice scarcely resilient in its operational context may
have small impact on the user perceptioniif it is rarely stimulated. Conversely,
a robust yet highly invoked microservice may determine perceivable MSA
unreliability, as the likelihood to observe a failure increases with usage.

Decision makers - MSA stakeholders, as well as managers of development,

56

CcO

uDevOps

3.5. RELIABILITY TESTING

testing and operation - need to be aware of how much reliable is the MSA in
the operating environment. This would drive strategic decisions, e.g. about

effort allocation to maintenance or re-engineering activities.

Traditional software reliability assessment techniques have limited
applicability to MSAs. Indeed, static attempts to gauge reliability are almost
useless, as the application and the usage profile change over time due to
frequent releases, services’ upgrades, dynamic service interactions, and to
how customers use the application - a scenario we have dealt with in the

previous Chapter.

The technique we present uses an adaptive sampling scheme for
reliability assessment of MSA in its operational context. It acts as a run-
time testing strategy, triggered upon request by a stakeholder who needs
an estimate of the MSA operational reliability. achieves unbiasedness,

accuracy and efficiency by three key activities:

1. Monitoring: Field data are gathered about the microservices’
usage profile and about failure/success of demands. This provides
updated estimates representing the real reliability at the time when

the assessment is requested.

2. Testing: Using only passive observations (monitoring) is inadequate
for estimates with high accuracy and confidence. Indeed, the
application could be not adequately stressed and failures would

need much time to be exposed, leading to overestimation of

57

3.5. RELIABILITY TESTING

3.51

CcO

uDevOps

reliability or, conversely, to an excessive number of observations
for an acceptable confidence. We use a testing algorithm based
on adaptive statistical sampling, which exploits data gathered in
operation to drive the test generation and accelerate the exposure

of failures.

Estimation: The testing algorithm identifies the most relevant test
cases in few steps, by forcing a disproportional selection of test
cases with respect to the observed usage profile. In principle, such a
type of sampling would yield biased estimates. Therefore, a proper
weight-based estimator is adopted at the end of testing in order
to counter-balance the selection strategy, ultimately providing an

accurate and unbiased estimate with small variance.

Usage scenarios

Two use cases are foreseen:

In use case UC1, the tester requires an estimate of the current MSA

reliability using a constrained testing budget. Let us consider as upper bound

on the number of tests which can be performed in operation a value as high

as the number of test frames - a test frame is a jth equivalence class within

domain D;, C; ;. In this situation, a without-replacement sampling scheme

is adopted, as in Pietrantuono et al. (2018).

In use case UC2, higher accuracy and/or stronger confidence in the

58

CcO

uDevOps

3.5. RELIABILITY TESTING

reliability estimate are required. The tester wants to achieve them even at
the cost of a possibly high number of test cases. In this scenario, without-
replacement sampling is not applicable, and we use a with-replacement

sampling scheme.

3.5.2 The method

The steps of the testing method includes pre-release activities, to be
performed once before release, and in vivo activities, to perform the

reliability assessment in operation.

Pre-release activities

Demand space partitioning. The demand space D is partitioned in a
set of subdomains. To this aim, values of the arguments of each edge
microservice method are grouped in equivalence classes, C; ;. We adopt
specification-based partitioning, where equivalence classes are defined
based on the input arguments in a method’s signature. Consider, for
instance, the method Login(String username, String password):
values of the username input can be grouped into five classes according to
the string length (in-range, out-of-range) and content (alphanumeric, ASCII,
or the empty string); for password, seven classes are defined, according
to the length and content (as for username), and to the satisfaction of

two application-specific requirements (one upper case letter, one special

59

CcO

uDevOps

3.5. RELIABILITY TESTING

character). The cartesian product yields 35 combinations. Each of them is

referred to as a test frame (corresponding to a subdomain).

Initialization. Each test frame is associated with the probabilities p; and
fi of selection and of failure of a demand from D, respectively. Their true
value is of course unknown; the estimates p; and fl of the true values are
used instead. In case the tester has no prior knowledge about expected
usage and failure proneness of microservices in operation, all p; and fl are
initialized by uniform distributions. It then refines the estimates dynamically
as more information becomes available from monitoring, using the simple
probabilities update formulas described later, or the previously-explained

Bayesian approach.

Graph construction. As required by the adatpvie sampling scheme
presented in the previous Chapter, an graph model is needed. In this case,
a graph of the test cases space is constructed, whose nodes represent test
frames, and an arc between two nodes represents a dependency between

the failure probabilities of the corresponding test frames.

For every pair (i, 7) of test frames of a method of an edge microservice,
we define a distance d as the number of differing input classes. For instance,
the distance between Login(username;, passwords) and Login(usernames,
passwords) is d = 1. The greater the distance, the bigger the chance for two

demands to execute different control flow paths within the method’s code.

60

CcO

uDevOps

3.5. RELIABILITY TESTING

The weight w; ; associated with the arc (7, j) captures the belief about the
joint failure probability of test frames ¢ and j. Indeed, as demands drawn
from two test frames of a method are likely to execute some common code,
the failure probability assigned to a test frame affects the belief about the
failure probability of another frame, depending on their distance. The weight
w; ; expresses the joint probability of failure: P(i N j) = P(ilj) - P(j).
The conditional failure probability P(i|j) is the probability for test frame i
to fail, conditioned on the fact that a failure is observed for frame j. P(i|j)
is inversely proportional to the distance: the smaller the distance, the more
similar the two frames, and the bigger the conditional probability of failure.
We represent this relation by P(i|j) = P(i) - 5 (d > 0, as at least one input

class differs between two test frames). Weights are computed as: w;; =

A

fisq 15

Run-time monitoring and update

Monitoring. The in vivo activities require run-time data about the usage
and failure probability of test frames, to compute an estimate aligned with
the current reliability in operation. To this aim, a monitoring facility traces
the requests to each microservice’'s method (name of the method and
input values, so as to map the demand to a test frame), and their outcome
(success/fail, so as to count the failed requests per test frame). Many

monitoring tools are available to gather such data, e.g. Amazon CloudWatch

61

CcO

uDevOps

3.5. RELIABILITY TESTING

(Amazon) and Nagios (Nagios Enterprises). Note that a rough reliability
estimate could be computed directly by the gathered data, but the demand
space is not guaranteed to be explored adequately by normal workload.
The goal here is to provide faithful estimates by actively spotting (through
the generated tests) those demands more informative about the current

reliability.

Probabilities update. The unknown usage and failure probabilities p; and
f; are modeled as random variables, whose estimate is updated as more
evidences (monitoring data) become available. The length of the history
of observations to consider should to be defined so as to promptly react
to changes of the usage profile and failure probabilities. Instead of the
Bayesian approach described earlier, we adopt here a simpler criterion, i.e.,
a sliding window of length 1/ on the history of the demands issued to edge

microservices. The update rule for p; and f; are:

N Au—]_ . - . _ R A U . _ . R
fu _ fu-t, Bt aom. (B

where:

°]5;‘_1 is the previous occurrence probability of the i-th test frame;

o fi“_l is the previous failure probability of the i-th test frame;

62

CcO

uDevOps

3.5. RELIABILITY TESTING

e R:isthe number of executed demands (less than W if the estimate

is requested within a window);

e op;': is the occurrence probability for test frame 7 at the current step,
estimated as the ratio between the number of failed demands to the

i-th test frame and R;

o o}i‘; is the failure probability for test frame 7 at the current step,
estimated as the ratio between the number of failed demands to the

1-th test frame and number of total demands to that test frame;

e H:isavalue between 0 and 1, which weighs the history considered

in the update (set to 50% in the experiments).

These rules allow changes of the operational profile and of the failure
probability to be detected more promptly than it would be by considering
the whole history.

Test generation algorithm

The test cases generation and execution phase consists of an iterative
algorithm using the adaptive sampling scheme, hecne the above-defined
graph. Assuming n test cases to spend, the algorithm generates and
executes one test case per step. The first test frame is selected by simple
random sampling, namely all test frames have equal probability of being

selected initially. In an iteration, a test case is generated and executed

63

CcO

uDevOps

3.5. RELIABILITY TESTING

for the selected test frame by drawing a demand for it (i.e., taking values
from the corresponding inputs classes), according to a uniform distribution.
Then, one of two sampling schemes is used to select the next test frame:
weight-based sampling (WBS) and simple random sampling (SRS)?. The
former is chosen with probability » and follows the arcs between graph
nodes (i.e., failure dependency between test frames), so as to explore
possible clusters of failing demands; this feature is useful when failure
points are clustered, as it often happens in software testing. This depth
exploration is balanced by SRS, chosen with probability 1 — r, for a breadth
exploration of the test frame space, useful to escape from unproductive

cluster searches. The steps are repeated until the testing budget n is over.

The test generation algorithm varies depending on the usage scenario.
In use case UC1, without-replacement WBS and SRS schemes are used, in
which a test frame can be selected only once. Clearly, this implies that the
number of tests must not exceed the number of test frames. This variant is
useful when just “few” tests can be executed in operation; it is a mere best
effort approach within an upper bounded sample size (i.e., number of tests).
In this scenario, a test frame is selected at step k& by a distribution according

to equation:

-+ (=) —, (3.46)

with:

?If there is no arc outgoing from the current set of selected test frames (thus, no failure dependency

between the current sample and any other test frame), the SRS scheme is used.

64

CcO

uDevOps

3.5. RELIABILITY TESTING

e i ;: probability to select test frame ¢ at step k;
e m: total number of test frames;

e s.: current sample, namely the set of all test frames selected up to

step k;
e ng,: size of the current sample s;;

e w;;: weight of arc from node (test frame) j in the current sample s,

to node (test frame) ¢;

e wy;: weight of arc from node j in the current sample s;, to node i

not in si;

r: probability of using WBS (hence, probability of using SRS: 1 — r).

In the scenario UC2 (with an unconstrained number of tests), with-
replacement sampling is adopted, where a test frame can be selected more
times. In this case Eq. 3.46 becomes:

D jesy Wi 1
e M (1—r) (3.47)
Zh:l,‘..m,jesk Wh,j m

ki =T -

The first addendum in Eq. 3.46 and Eq. 3.47 accounts for the
contribution proportional to the weights of the graph (WBS in Fig. 4.2),
which capture the failure dependency between test frames. The second
addendum in Eq. 3.46 and Eq. 3.47 accounts, respectively, for the selection

probability of not-yet-selected test frames in SRS without replacement, and

65

CcO

uDevOps

3.5. RELIABILITY TESTING

the selection probability in SRS with replacement. The algorithm is adaptive
as the ¢ values change depending on which test frame is in the current

sample.

Estimation

The testing algorithm is fed with information from monitoring, namely p; and
ﬁ- of each test frame. Testing is expected to improve ﬁ by spotting more
failing test frames, yet it cannot tell anything about the usage probability p;.
Therefore, the p; values remain unchanged during testing, and are used only
at the end to compute the estimate. The fz values are updated at each step

considering the 0/1 (success/failure) outcome of tests.

We denote by y;; the observed outcome of a test case ¢ taken from

test frame ¢, y; ;=0/1.

In scenario UC2, the estimate of fz is the updated ratio of the number

of failing over executed demands with inputs taken from test frame i: f; =

ﬁ--m+21’ﬁo Yit

P where n; is the number of demands with an input from test

frame 7 observed during operation and m; is the number of demands taken
from test frame i during testing (i.e., test cases).

In scenario UC1, where m; < 1, ﬁ is unchanged if m; = 0; if m; =1, it

- fimityia

is given by: f; ——

The monitoring data and the results of testing are used to compute the
estimate of the failure probability ® =). p; - fi. The estimate is updated

66

CcO

uDevOps

3.5. RELIABILITY TESTING

at step £ accounting for the change of the selection probability for each test
frame (g ;) and of the failure probability f; The estimator properly accounts
for the disproportional selection (with respect to the operational profile)
made through Eq. 3.46 so as to preserve unbiasedness, by using weights
equal to 1/gy; (values selected with high probability will contribute less to

the estimation, and vice-versa), as detailed hereafter.

In scenario UC1, the estimator at step k& = 1 (the first observation taken
by the SRS) is: z; = N - p; - f{z where N is the total number of test frames,
p; is the probability of selecting the i-th test frame (that does not depend on
the step) and fiz is the failure probability of the selected test frame ¢ at step
1. At step £ > 1 the estimator is the one by Hansen-Hurwitz Hansen and

Hurwitz (1943):

1~ Di
2= — Z L (3.48)
no— ki

where n is the number of executed tests.

In scenario UC2, the initial estimator z; is the same as before, while at

step £ > 1 it becomes:

=S pi frtt S (3.49)

hE€sy k,Z

In both use cases, the final estimator is the average of the values

obtained at each step:

A

1 N &
b=—(N-pfl, 50
~(p,m+Z>m (3.50)

67

CcO

3.6. PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VI GRS
SAMPLING

representing the expected probability to experience a failure on a random

demand to the MSA.

The overall MSA reliability is then computed as:

A

R=1- 0. (3.51)

3.6 PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VIA
OP-BASED SAMPLING

This work has been presented in a software testing conference Camilli et al.

(2022a). We hereafter report the peculiar aspects.

The focus is on performance and reliability, and on their inter-
relationship, considered in a DevOps context where continuous testing
and monitoring represent two key practices. To assess if a release meets
a desired quality, tests are performed in production, or in a staging
environment with realistic users’ behaviour and workload intensity . The

setpes are depicted in Figure 3.1.

The main steps of the strategy are as follows:

1. definition of the operating conditions (based on the usage data
collected from Ops), composed of workload intensity and behaviour

of the actors using the system;

2. execution of ex-vivo testing sessions, loading the system under test

(SUT) with the specified workloads;

68

CcO

3.6. PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VI GEERELE
SAMPLING

gulll
usage dV \
from Ops
"@

workload
intensity
behavior models
of actors

workload specification behavior mix

(i) definition of the operational setting

Duﬂu—»&i«—ﬁ%ﬂ%lm

deployment
workload | '
oad testin '
intensity session 9 configuration :
raw
measurements !

>Q >i\:ﬁ

raw KPIs and
measurements » '- visualization
LV

performance-reliability
metrics

(iii) integrated analysis |:|I> decision gate

Figure 3.1. The steps of the proposed technique. From Camilli et al. (2022a)

69

CcO

3.6. PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VI GRS
SAMPLING

3. integrated analysis, fed by raw measurements, to compute and

visualize performance and reliability estimates.

3.6.1 Definition of the operating conditions

The first stage consists in defining the operating conditions to be reproduced

for testing the system. It includes the following elements:

e the workload specification that describes allowed requests that
a user can invoke on the SUT, together with details on the way
to generate the requests to each operation (i.e., relative paths,

parameters, and constraints);

e asetof behavioural models, each providing a stochastic representation
of user sessions in terms of (valid and invalid) requests generated

according to the workload specification;

e a workload intensity value: the expected number of concur- rent

users, likely to access the system in operation;

e a behaviour mix, namely a distribution of frequencies of behavioural
models, representing their occurrence probability within the defined

workload intensity.

A user interacts with the system according to a behavioural model.

The model is generated by combining the information extracted from the

70

CcO

3.6. PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VI GRS
SAMPLING

documentation (i.e., the workload specification) and the frequency of

requests issued by different actors extracted from usage data.

The technique developed foresees a behavioural model that provides
a probabilistic representation of user sessions in terms of a Discrete Time
Markov Chain (DTMC) Camilli et al. (2022b); Norris (1997), where the nodes
represent the requests that can be issued to the system by providing either
a valid or invalid input values, according to the API specification. Thus, the
input space for each request is partitioned into valid and invalid classes,
henceforth referred to as request classes. The transitions in the DTMC

specify the probability of moving from a given request class to the next one.

The DTMCs are used to drive the generation of instances of synthetic
users (i.e., actors) for the testing sessions. The behaviour mix defines the
percentage of concurrent users to be sampled for each actor. For instance,
assuming to have three different actors in a ticket reservation system, for a

workload intensity of NV concurrent users, the following behaviour mix:
(guest: 0.5; buyer: 0.3; refund_claimer: 0.2) (3.52)

is used to emulate a scenario where 50% of the N users are guests, 30% of

them carry out a reservation, and 20% request refunding.

The operating conditions (behavioural models, behaviour mix, and
workload intensity) are extracted automatically from usage data collected
during the Ops stages of a DevOps cycle and raw sessions are automatically

recorded in session logs and then analyzed to extract the workload intensity

71

CcO

3.6. PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VI GRS
SAMPLING

and DTMCs using clustering algorithms Bertolino et al. (2020a); Vogele
et al. (2018). In this case, a cluster represents an actor and is a set of
sessions represented by similar DTMCs. Thus, to automatically generate
the operating conditions, we first need the following data in a session
log: “session identifier”, “request start time”, “request end time”, “request
relative path”and combinations of “valid” and “invalid values” for the
arguments of each request. Once the DTMCs are generated, the frequency
associated with DTMC is computed as frequencies of sessions in clusters

over all sessions. Thus, the frequencies defines the empirical categorical

distribution for workload intensity.

3.6.2 Ex-vivo testing

In this stage, joint performance/reliability tests are performed ex-vivo in
the operational environment. The SUT is deployed at the beginning of each
test session (and un-deployed at the end), then loaded with synthetically
generated users that replicate the operating conditions of interest. The
sessions are generated and then orchestrated according to the following

factors defined by the tester:

e the DTMC behavioural models of the users;
e the behaviour mix categorical distribution;

e aset A of workload intensity values;

72

CcO

3.6. PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VI GRS
SAMPLING

e asetof deployment configurations C (e.g., memory, CPU, and replicas

per each microservice).

For each pair (A, ¢) € A x C, the SUT is deployed by using the configuration
c. Thus, the testing session starts and generates the workload intensity .
Each actor instance is drawn with a probability of the actor’s behaviour
mix. Given an actor instance, the testing process automatically samples
requests as well as inputs according to the corresponding DTMC. Namely,
each input is generated by drawing from one of the two classes according to
the current node and outgoing transition probability. For instance, a buyer
instance from the state login, can either perform a search with a valid
input (with probability 0.9) or an invalid one (probability 0.1). An invalid
search request can be issued, for example, by inserting special symbols
in the argument startingPlace, or by using a wrong date-time format
for the departureTime argument. Between each request the process
applies a pseudo-random think time using an exponential distribution (with
average inter-arrival time between 1 and 5 seconds) to represent realistic

user behaviour.

During all the testing sessions, we collect raw measurement data,
that are then used in the integrated performance and reliability analysis and

visualization as described in the following.

73

CcO

3.6. PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VI GRS
SAMPLING

3.6.3 Performance-reliability analysis

Metrics

The analysis starts by estimating performance and reliability during the

observation period T’ (i.e., duration of a test session) for each request class
p (e.g., loginyaiia).

For each class p, we define the Performance estimator, P(p), as the
normalized distance from the average response time 1i(p) to a performance

threshold L(p):

L _
: Hoyohlel - pu(p) < Lip)

P(p) = (3.53)

0 otherwise
The lower the value, the worse is performance. It is worth noting that the
parametric threshold L(p) in Eq. 3.53 can be set for any class p. There are
essentially two ways known in literature to set this threshold: according to
a user-based experience Nielsen (1994) or a scalability requirement Avritzer
et al. (2018). The former approach follows usability engineering practices
for web-based applications. In this case, L(p) can be set to 1 sec if we want
to represent the limit for the user’s flow of thought to stay uninterrupted,
or 10 sec for keeping the user’s attention focused. According to the
latter approach and existing literature Avritzer et al. (2020); Camilli and
Russo (2022), L(p) can be empirically derived as a scalability threshold:

L(p) = po(p) + 3 - oo(p), with py(p) and oy(p) average and standard

74

CcO

3.6. PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VI GRS
SAMPLING

deviation of the response time for the request class p, measured during
a testing session carried out under ideal operating conditions, like a small
number of users and full availability of system resources. We further define

Performance Degradation (PD) as 1 — P(p), so that the higher its value, the

worse is the performance.

We then define the Reliability estimator, R(p), as the ratio of
non-failing requests in 7', according to the NelsonAiAalen non-parametric

estimator Nelson (2000); Pietrantuono et al. (2020b):

R(p) =1— % (3.54)

with N (p) total number of issued requests in p, and F'(p) number of failed
requests in p, so that the lower the value, the worse is reliability. Then we
define the ratio of Failed Requests (FR) as 1 — R(p), so that higher values
correspond to worse reliability. In our work, detect a failure or success of a
request on the HTTP status code. Specifically, every status code other than

2xx (success) is considered as a failed request.

To investigate issues associated with performance and reliability at
finer level, the solution provides engineers with additional metrics for each

request class p:

e Request Ratio (RR): ratio of requests in class p over of all the requests

of the test session.

e Connection Errors ratio (CE): requests that return a connection error

75

CcO

3.6. PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VI GEERELE
SAMPLING

out of all the failed requests in p over of all the requests of the test

session.

e Server Errors ratio (SE): requests that return a server error out of all

the failed requests in p over of all the requests of the test session.

Visualization facilities are also provided for a more comprehensive reporting.

The solution is fully automated and requires the following inputs:
the RESTful API specification, the target operating conditions, and the
performance threshold for each class of requests. Raw measurements
are collected during each test session to compute the performance and
reliability estimators as well as the additional indices per each individual
class. At the end of the sessions, the tester visualizes metrics as well as plots

in a interactive notebook implemented using Apache Zeppelin.

Further details about the proposal and expeirmentation are in the

paper Camilli et al. (2022a).

76

CcO

uDevOps

4 SYSTEM TESTING FOR FUNCTIONAL AND
ROBUSTNESS

This chapter reports our proposal for supporting the system testing phase,
with the aim of checking the functional correctness and robustness of the
MSA under test. Since we do not use information from the expected usage
(i.e., the operational profile), the results of such a testing are oriented toward
the development team (rather than for assessing quality-in-use attributes
such as operational reliability and performance). The technique is therefore

meant for he system testing phase rather than for acceptance testing.

It also integrates an approach for tests prioritization, which will be used

to support security testing.

The solution being developed and its preliminary results on a case
study are presented in two papers we have published in the context of the

project Giamattei et al. (2022a)Giamattei et al. (2022b).

7

CcO

uDevOps

4.1. THE SPECIFICATION-BASED TESTING METHOD

4.1 THE SPECIFICATION-BASED TESTING METHOD

The proposed solution is a black-box testing technique based on API
scpeficiation of an MSA. This is preferable as MSA code is polyglot
and distributed across various repositories. Automatic techniques for
specification-based black-box testing of RESTful web-services can be also
applied for MSA testing, as they can generate test cases from documentation
of their microservices interface Arcuri (2019); Atlidakis et al. (2019); Corradini
et al. (2021)." This practice is adopted in black-box testing of service-oriented
architectures for fault detection Karlsson et al. (2020); Martin-Lopez et al.
(2020), as well as to test against requirements while achieving some degree

of coverage Corradini et al. (2021); Martin-Lopez et al. (2019).

However, the characteristics of real-scale MSA can make black-box
testing fall short. When many microservices are involved, with complex
inter-dependencies, a black box view gives no information about the internal
behaviour (both in terms of achieved internal-microservices coverage and
of their failing behaviour). Black-box testing exercises functionalities from
an external perspective, with requests directed to edge microservices. The
output of an edge microservice is usually dependent on the interaction with
other internal microservices, which can be edge for other functionalities,

or inaccessible from the outside. The absence of an internal perspective

'"The most notable open format for specifying web services and MSA Application Programming Interfaces

(API) is OpenAPI/Swagger Ma et al. (2018) (https://www.openapis.org).

78

CcO

uDevOps

4.1. THE SPECIFICATION-BASED TESTING METHOD

does not allow a tester to distinguish if a failure observed on a request
to a microservice is due to the microservice being faulty or to another,
interacting, microservice that propagated its failure to the one under test.
Also, internal microservices can be invoked by different edge microservices;
if one of them is faulty, several different failures can be observed at edge
level, in possibly different microservices. Testing without an internal

perspective considers these as independent failures.

The solution proposed is a grey-box specification-based strategy for
automatic tests generation and interactions monitoring. The strategy
is supported by a tool, called MacroHive, deployed as a collection
of microservices according to a service mesh pattern. This provides
observability of internal interactions, which is crucial for microservice
testing Ghani et al. (2019). The tool is applied to the TrainTicket benchmark
Zhou et al. (2018), and turns out to perform comparably to black-box
state-of-the-art techniques in edge-level coverage; it however: i) exposes a
number of internal failures undetected by black-box testing (distinguishing
propagated from masked failures), thus easing the identification of faulty
microservices and of failure propagation chains; ii) gives details about
internal dependencies, errors, and exceptions - of great importance to
practitioners Waseem et al. (2021); iii) and requires a lower number of tests.
Moreover, being itself a (set of) microservices deployed with the MSA, it

does not need to run separate testing sessions for each microservice to test.

79

CcO

uDevOps

4.2. OVERVIEW

4.2 OVERVIEW

The grey-box strategy for testing an MSA, aims to expose and characterize
failures® and to provide internal coverage information. It focuses on
observability, which is important when debugging a distributed system such
as an MSA Indrasiri and Siriwardena (2018). MSA are usually characterized

by:

e edge microservices, exposing APIs to external users to access the

functionality offered by the systems;

e internal microservices, exposing APIs to other microservices to

implement complex business functions.

A microservice can be edge for some functions and internal for others.
Black-box testing may not be able to allow testers to evaluate the test suite’s
ability to cover internal interactions. Moreover, they cannot spot when
a microservice fails due its own fault or due to the failure of an internal

microservice.

MacroHive generates tests starting from the microservices’ API, and
for every executed test observes the chain of requests among internal

microservices. It supports the proposed grey-box testing strategy via

2In the MSA literature, a failure is considered as a request yielding a 5xx HTTP response code, indicating
an error condition, an unhandled exception, or in general the inability to serve the request Arcuri (2019);

Laranjeiro et al. (2021); Martin-Lopez et al. (2020).

80

CcO

uDevOps

4.2. OVERVIEW

automated test suite generation, then execution and monitoring thanks to
an infrastructure - designed according to the service mesh pattern Li et al.

(2019) - deployed with the MSA under test.

At the end of a session, the following results concerning edge and

internal microservices are provided to the tester:

e the set of executed tests with the corresponding outcome;
o the path of requests of each test through the internal microservices;

e aset of metrics at both edge and internal microservices levels (e.g.,

number of failures, average response time);

e aset of metrics for each level of dependency, namely the depth of a

microservice in the requests chain.

With this information, the tester can discriminate different
kinds of failures involving internal microservices, such as masked
failures (corresponding to correct responses from edge microservices,
despite failures of internal microservices), and propagated failures
(incorrect responses of the edge microservices due to failures of internal

microservices).

81

CcO

uDevOps

4.3. MACROHIVE

4.3 MACROHIVE

MacroHive is conceived to automatically expose both edge and internal
failures, so that a tester does not need to manually inspect request paths.
This functionality allows catching internal failures, undetectable by black-box
strategies. It also allows identifying the true cause of edge-level failures,
namely if due to the edge itself or to internal microservices. Since the
testing process targets microservices of the same MSA, it is possible to
detect common cause failures (e.g., a single faulty microservice that causes

failures of other microservices).

Figure 4.1 shows the MacroHive infrastructure. It has three main
components: uTest, uSauron and uProxy (uP). The first is responsible for
test cases generation and execution. The other components form a support
inter-service communication infrastructure Li et al. (2019) to be deployed
with the SUT. An MSA is composed of many microservices with independent
deployments, often controlled by multi-container management tools such
as Docker Compose Gouigoux and Tamzalit (2017); Jaramillo et al. (2016).
MacroHive automatically manipulates a docker-compose YAML file to add a

sidecar proxy to each microservice to test/monitor.

uTest
This service generates and executes a test suite. It adopts a pairwise
generation strategy that could help testers to detect multi-factor faults,

which are a high percentage in software systems Hu et al. (2020). Compared

82

CcO

uDevOps

4.3. MACROHIVE

v,
.,

.,
o,

.
.

MacroHive
Infrastructure

App-pS4

Figure 4.1. The MacroHive infrastructure

to other state of the art techniques, we expect a combinatorial design to
substantially reduce testing cost, while providing good coverage and fault
detection ability Cohen et al. (1996). uTest automatically retrieves the
specification (in the OpenAPl/Swagger format) of the edge microservices of
the MSA under test. The API are parsed to extract an Input Space Model
consisting of HTTP methods, URIs and body templates, HTTP status codes
and parameters’ details (type, bounds, default value, etc.); equivalence
classes Bertolino et al. (2020b) are defined for each parameter and then

categorized into valid and invalid.?

3A class is valid if it contains only input parameter values which do comply to the microservice specification,

and invalid if it contains only values that do not.

83

CcO

uDevOps

4.3. MACROHIVE

Table 4.1 shows an example of input space partitioning for a request
with three parameters. By selecting two equivalence classes per parameter,
test case specifications are produced with a pairwise combinatorial strategy:
a 2-way test suite is generated, covering all pairs of parameter classes. Table
4.2 shows a sample test case specification: a test case generated from this
specification shall have for p; a value chosen from class c; » (the example
value); for p, a value from class ¢ » (negative value in range), and for p;3 the

value true or false.

We call valid test cases those containing parameter values all
belonging to valid input classes; invalid test cases those containing at least
a parameter value belonging to an invalid class. To generate a nominal test
suite (composed of only valid test cases), only valid classes per parameter are
selected (when available, examples valid and default values are preferred),
otherwise valid and invalid classes per parameter are chosen to generate a

mixed test suite (e.g., for robustness testing).

The generated tests are executed by sending HTTP requests.
MacroHive allows generating requests also in case of authentication, by
specifying credentials or tokens in the configuration file. The test outcome

is automatically determined by evaluating the received HTTP status code.

uSauron and uProxy
These two components constitute a service mesh infrastructure to trace

service dependencies and log request-response couples during a testing

84

CcO

uDevOps

4.3. MACROHIVE

session. Although many monitoring tools are available in the literature (e.g.,
Prometheus?, Jaeger>, etc.), we preferred to build our infrastructure in favor

of automation and flexibility with minimum instrumentation.

uProxy (uP) is deployed alongside each microservice to test/monitor,
complying with the sidecar pattern Burns and Oppenheimer (2016); Jamshidi

et al. (2018). Each proxy performs two tasks:

e acting as a reverse proxy for the coupled microservice;

e sending to uSauron an information packet whenever it collects a

request-response couple.

Different threads run these tasks to minimize communication delay. The
information packet is composed of: request/response URL, request/response

body, HTTP response code, response time, sender/receiver address.

uSauron is a microservice responsible for the collection of information
provided by proxies. In particular, it aims to log proxies packets and compute
fine-grained metrics (e.g., coverage, dependencies) for each test. For this
purpose, uSauron runs a distributed algorithm during a testing session to

link collected information to executed tests.

Test execution algorithm

The tests execution algorithm run by MacroHive (Figure 4.2) is realized by

“https://prometheus.io/
Shttps://www.jaegertracing.io/

85

https://prometheus.io/
https://www.jaegertracing.io/

CcO

uDevOps

4.3. MACROHIVE

App-pS2 App-uS3
pp-y sreqs CAPPH
uP uP
= SResp3 -
: o
2 o
- i
o

1’3
K
o
ot
o
X
8

P

Figure 4.2. Example test execution sequence

uTest (the test executor), uSauron (the collector), and uProxies (the probes).
The example in Figure 4.2 shows a test involving microservices uS4 (edge)
and uS2, uS3 (internal); it entails the following messages: a start recording
message (number 1) is sent by uTest to uSauron:; it notifies the intent to run
test t and that every subsequent message received by uSauron needs to be
linked to ¢t. Then, uTest actually starts the test ¢, sending an HTTP request
to the uP proxy coupled with the edge microservice (message number 2).
The involved proxies intercept the request-response couples with the edge
microservice (2,7) and the internal interactions (3,6 and 4,5). For every
intercepted request/response, the proxies send information packets to

uSauron (messages 7.1, 6.1, and 5.1), which links them to test t. When uTest

86

CcO

uDevOps

4.3. MACROHIVE

receives the response for ¢ (message number 7), it sends a stop record
message to uSauron (message number 8). On receipt, uSauron stops the

packets recording and saves the collected records.

This algorithm is executed for every test in a testing session. The way
it is designed, the monitoring infrastructure can capture any concurrent calls
of internal microservices made within the same test execution. At the end

of a session, uSauron outputs a set of statistics.

Details about the implementation and experimentation are in the

papers we published Giamattei et al. (2022a)Giamattei et al. (2022b).

87

CcO

uDevOps

4.3. MACROHIVE

Table 4.1. Example of input space partitioning

Parameter Type Input Classes Category
D1
4 (required, | 4*string | c11:inrange valid
in path)
c1.2: specified example value(s) valid
c1 3: empty string invalid
c1 4t No string invalid
P2
4 (required, | 4*integer | cy1: positive value in range valid
in body)
c2.2: Negative value in range valid
c2,3: alphanumeric string invalid
c2.4: No value invalid
p3
4™ (optional, | 4*boolean | cs1: {true false} valid
in body)
32t No value valid
c3 30 empty string invalid
c3 4: alphanumeric string invalid

88

CcO

uDevOps

4.3. MACROHIVE

Table 4.2. A sample test case specification

URI template http://exampleHost:8080/examplePath/{c; » }

HTTP method POST
bOdy tem plate {ALIJPQACI:{62’2},)&0])3:&0:{03’1}}
HTTP status code 201, 400

89

CcO

uDevOps

5 CONCLUSION

This document presented the work done for the definition of testing
strategies aimed at quality assessment and improvement. Specifically, we
have first described the main challenges for testing particularly relevant
in the context of Microservice-DevOps systems. Then, we reported about
the algorithms we are using to support both the acceptance testing stage,
wherein an assessment of quality is required (e.g., for checking quality
gates), and for the specification-based system testing stage to check for

functional correctness and robustness.

The implementation of the above-mentioned techniques is expected
in Deliverable D3.2. Within the project, we are also working on the
integration with Artificial Intelligence (Al): how Al can support testing and
quality assurance in general, and how we should test systems (possible
microservices architectures) containing Al/ML components, viewed in the
context of a DevOps development and deployment. Also, further quality

attributes, such as energy consumption, are under investigation.

90

CcO

uDevOps

REFERENCES

Adams, T. (1996). “Total variance approach to software reliability estimation.” IEEE Trans. on Software
Engineering, 22(9), 687-688.

Albert, 1. and Denis, J.-B. (2012). “Dirichlet and multinomial distributions: properties and uses in
Jags.” Rapport technique 2012-5, INRA.

Almering, V., Genuchten, M. V., Cloudt, G., and Sonnemans, P. (2007). “Using software reliability
growth models in practice.” IEEE Software, 24(6), 82-88.

Amazon. “Cloudwatch, <http://aws.amazon.com/it/cloudwatch (Last checked 27/2/2019)>.

Arcuri, A. (2019). “RESTful APl Automated Test Case Generation with EvoMaster.” ACM Transactions
on Software Engineering and Methodology, 28(1).

Atlidakis, V., Godefroid, P., and Polishchuk, M. (2019). “RESTler: Stateful REST API Fuzzing.” IEEE/ACM
41st International Conference on Software Engineering (ICSE), IEEE, 748-758.

Avritzer, A., Ferme, V., Janes, A., Russo, B., Schulz, H., and van Hoorn, A. (2018). “A quantitative
approach for the assessment of microservice architecture deployment alternatives by automated
performance testing.” Proceedings of the 12th European Conference on Software Architecture
(ECSA), Vol. 10469 of Lecture Notes in Computer Science, Springer, 159-174.

Avritzer, A., Ferme, V., Janes, A., Russo, B., van Hoorn, A., Schulz, H., Menasché, D., and Rufino,
V. (2020). “Scalability assessment of microservice architecture deployment configurations: A
domain-based approach leveraging operational profiles and load tests.” Journal of Systems and
Software, 165(110564), 1-16.

Beizer, B. (1997). “Cleanroom process model: a critical examination.” IEEE Software, 14(2), 14-16.

Bertolino, A., De Angelis, G., Guerriero, A., Miranda, B., Pietrantuono, R., and Russo, S. (2020a).
“DevOpRET: Continuous reliability testing in DevOps.” Journal of Software: Evolution and Process,
2020;e2298, 1-17.

Bertolino, A., De Angelis, G., Guerriero, A., Miranda, B., Pietrantuono, R., and Russo, S. (2020Db).
“DevOpRET: Continuous reliability testing in DevOps.” Journal of Software: Evolution and Process
€2298 smr.2298.

Burns, B. and Oppenheimer, D. (2016). “Design patterns for container-based distributed
systems.” 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16), Denver,
CO, USENIX Association, <https://www.usenix.org/conference/hotcloud16/workshop-
program/presentation/burns>.

Cai, K.-Y. (2002). “Optimal software testing and adaptive software testing in the context of software
cybernetics.” Information and Software Technology, 44(14), 841-855.

Cai, K.-Y,, Jiang, C.-H., Hu, H., and Bai, C.-G. (2008). “An experimental study of adaptive testing for
software reliability assessment.” Journal of Systems and Software, 81(8), 1406-1429.

91

CcO

uDevOps

REFERENCES

Cai, K.-Y,, Li, Y-C., and Liu, K. (2004). “Optimal and adaptive testing for software reliability
assessment.” Information and Software Technology, 46(15), 989-1000.

Camilli, M., Guerriero, A., Janes, A., Russo, B., and Russo, S. (2022a). “Microservices integrated
performance and reliability testing.” Proceedings of the 3rd ACM/IEEE International Conference
on Automation of Software Test, AST '22, New York, NY, USA, Association for Computing
Machinery, 29-39, <https://doi.org/10.1145/3524481.3527233>.

Camilli, M., Janes, A., and Russo, B. (2022b). “Automated test-based learning and verification of
performance models for microservices systems.” Journal of Systems and Software, 187, 111225.

Camilli, M. and Russo, B. (2022). “Modeling performance of microservices systems with growth
theory.” Empirical Software Engineering, 27(39), 1-44.

Catal, C. and Diri, B. (2009). “A systematic review of software fault prediction studies.” Expert Systems
with Applications, 36(4), 7346-7354.

Cobb, R. and Mills, H. (1990). “Engineering software under statistical quality control.” IEEE Software,
7(6), 45-54.

Cohen, D., Dalal, S., Parelius, J., and Patton, G. (1996). “The combinatorial design approach to
automatic test generation.” IEEE Software, 13(5).

Corradini, D., Zampieri, A., Pasqua, M., and Ceccato, M. (2021). “Empirical comparison of black-box
test case generation tools for restful apis.” 2021 IEEE 21st International Working Conference on
Source Code Analysis and Manipulation (SCAM), |EEE, 226-236.

Cotroneo, D., Pietrantuono, R., and Russo, S. (2013). “Combining Operational and Debug Testing for
Improving Reliability.” IEEE Transactions on Reliability, 62(2), 408-423.

Cotroneo, D., Pietrantuono, R., and Russo, S. (2016). “Relai testing: A technique to assess and
improve software reliability.” IEEE Transactions on Software Engineering, 42(5), 452-475.

Currit, P, Dyer, M., and Mills, H. (1986). “Certifying the reliability of software.” IEEE Trans. on Software
Engineering, SE-12(1), 3-11.

Fox, D. (2003). “Adapting the Sample Size in Particle Filters Through KLD-Sampling.” Int. Journal of
Robotics Research, 22, 2003.

Frankl, P., Hamlet, D., Littlewood, B., and Strigini, L. (1998). “Evaluating testing methods by delivered
reliability.” IEEE Trans. on Software Engineering, 24(8), 586-601.

Gashi, ., Popov, P.,, and Stankovic, V. (2009). “Uncertainty explicit assessment of off-the-shelf
software: A bayesian approach.” Information and Software Technology, 51(2), 497-511.

Ghani, I., Wan-Kadir, W., Mustafa, A., and Imran Babir, M. (2019). “Microservice testing approaches:
A systematic literature review.” International Journal of Integrated Engineering, 11(8), 65-80.

Giamattei, L., Guerriero, A., Pietrantuono, R., and Russo, S. (2022a). “Assessing black-box test
case generation techniques for microservices.” Quality of Information and Communications
Technology, A. Vallecillo, J. Visser, and R. Pérez-Castillo, eds., Cham, Springer International
Publishing, 46-60.

92

CcO

uDevOps

REFERENCES

Giamattei, L., Guerriero, A., Pietrantuono, R., and Russo, S. (2022b). “Automated grey-box testing
of microservice architectures.” The 22nd IEEE Conference on Software Quality, Reliability, and
Security, IEEE.

Goel, A. L. (1985). “Software reliability models: Assumptions, limitations and applicability..” IEEE
Trans. on Software Engineering, SE-11(12), 1411-1423.

Goel, A. L. and Okumoto, K. (1979). “Time-dependent error-detection rate model for software
reliability and other performance measures.” IEEE Trans. on Reliability, R-28(3), 206-211.

Gokhale, S. and Trivedi, K. (1998). “Log-logistic software reliability growth model.” Proc. 3rd Int.
High-Assurance Systems Engineering Symposium (HASE), 34-41.

Gouigoux, J. and Tamzalit, D. (2017). “From monolith to microservices: Lessons learned on an
industrial migration to a web oriented architecture.” 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW), IEEE, 62-65.

Hansen, M. H. and Hurwitz, W. N. (1943). “On the theory of sampling from finite populations.” The
Annals of Mathematical Statistics, 14(4), 333-362.

Horvitz, D. G. and Thompson, D. J. (1952). “A generalization of sampling without replacement from
a finite universe.” Journal of the American Statistical Association, 47(260), pp. 663-685.

Hu, L., Wong, W., Kuhn, D., and Kacker, R. (2020). “How does combinatorial testing perform in the
real world: an empirical study.” Empirical Software Engineering, 25.

Huang, C.-Y,, Lo, J-H., Kuo, S.-Y., and Lyu, M. (2002). “Optimal allocation of testing resources for
modular software systems.” Software Reliability Engineering, 2002. ISSRE 2003. Proceedings. 13th
Int. Symposium on, 129-138.

Indrasiri, K. and Siriwardena, P. (2018). Microservices for the Enterprise: Designing, Developing, and
Deploying. Apress, USA, 1st edition.

Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., and Tilkov, S. (2018). “Microservices: The journey
so far and challenges ahead.” IEEE Software, 35(3), 24-35.

Jaramillo, D., Nguyen, D. V., and Smart, R. (2016). “Leveraging microservices architecture by using
Docker technology.” SoutheastCon 2016, IEEE, 1-5.

Karlsson, S., Causevi¢, A., and Sundmark, D. (2020). “QuickREST: Property-based Test Generation
of OpenAPI-Described RESTful APIs.” IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), IEEE, 131-141.

Laranjeiro, N., Agnelo, J., and Bernardino, J. (2021). “A Black Box Tool for Robustness Testing of REST
Services.” IEEE Access, 9.

Li, W., Lemieux, Y., Gao, J., Zhao, Z., and Han, Y. (2019). “Service mesh: Challenges, state of the
art, and future research opportunities.” 2019 IEEE International Conference on Service-Oriented
System Engineering (SOSE), IEEE, 122-127.

Linger, R. and Mills, H. (1988). “A case study in cleanroom software engineering: the ibm cobol

structuring facility.” 12th Int. Computer Software and Applications Conference, COMPSAC 88, 10-
17 (Oct).

93

CcO

uDevOps

REFERENCES

Lohr, S. L. (2009). Sampling Design and Analysis. Duxbury Press; 2 edition.

Lv, J., Yin, B.-B., and Cai, K.-Y. (2014a). “Estimating confidence interval of software reliability with
adaptive testing strategy.” Journal of Systems and Software, 97, 192-206.

Lv, J., Yin, B.-B., and Cai, K.-Y. (2014b). “On the asymptotic behavior of adaptive testing strategy for
software reliability assessment.” IEEE Transactions on Software Engineering, 40(4), 396-412.

Ma, S., Fan, C., Chuang, Y., Lee, W., Lee, S., and Hsueh, N. (2018). “Using service dependency graph
to analyze and test microservices.” 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), Vol. 02, IEEE, 81-86.

Martin-Lopez, A., Segura, S., and Ruiz-Cortés, A. (2019). “Test Coverage Criteria for RESTful Web

APIs.” Proc. of the 10th ACM SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation (A-TEST), ACM, 15-21, <https://doi.org/10.1145/3340433.3342822>.

Martin-Lopez, A., Segura, S., and Ruiz-Cortés, A. (2020). “RESTest: Black-Box Constraint-Based
Testing of RESTful Web APIs.” Service-Oriented Computing, E. Kafeza et al., ed., Springer, 459-
475.

Mills, H., Dyer, M., and Linger, R. (1987). “Cleanroom software engineering.” IEEE Software, 4(55),
19-24.

Musa, J. (1996). “Software reliability-engineered testing.” Computer, 29(11), 61-68.
Nagios Enterprises. “Nagios Monitoring Solutions, <www.nagios.org (Last checked 27/2/2019)>.

Neil, M., Fenton, N., and Nielson, L. (2000). “Building Large-scale Bayesian Networks.” Knowl. Eng.
Rev., 15(3), 257-284.

Nelson, W. (2000). “Theory and applications of hazard plotting for censored failure data.”
Technometrics, 42(1), 12-25.

Nielsen, J. (1994). Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Norris, J. R. (1997). Markov chains. Number 2 in Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge university press.

Ohishi, K., Okamura, H., and Dohi, T. (2009). “Gompertz software reliability model: Estimation
algorithm and empirical validation.” Journal of Systems and Software, 82(3), 535-543.

Omri, F. (2014). “Weighted statistical white-box testing with proportional-optimal stratification.”
19th International Doctoral Symposium on Components and Architecture, WCOP’14, ACM, 19-24,
<http://doi.acm.org/10.1145/2601328.2601333>>.

Ostrand, T. J. and Balcer, M. J. (1988). “The category-partition method for specifying and generating
fuctional tests.” Commun. ACM, 31(6), 676-686.

Pham, H. (2006). Software System Reliability. New York, NY, USA: Springer-Verlag.

Pietrantuono, R., Popov, P, and Russo, S. (2020a). “Reliability assessment of service-based software
under operational profile uncertainty.” Reliability Engineering System Safety, 204, 107193.

94

CcO

uDevOps

REFERENCES

Pietrantuono, R. and Russo, S. (2016). “On adaptive sampling-based testing for software reliability

assessment.” 2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE),
1-11.

Pietrantuono, R., Russo, S., and Guerriero, A. (2018). “Run-Time Reliability Estimation of Microservice
Architectures.” 29th International Symposium on Software Reliability Engineering (ISSRE), IEEE,
25-35.

Pietrantuono, R., Russo, S., and Guerriero, A. (2020b). “Testing microservice architectures for
operational reliability.” Software Testing, Verification and Reliability, 30(2), e1725.

Pietrantuono, R., Russo, S., and Trivedi, K. (2010). “Software Reliability and Testing Time Allocation:
An Architecture-Based Approach.” IEEE Trans. on Software Engineering, 36(3), 323-337.

Podgurski, A., Masri, W., McCleese, Y., Wolff, F., and Yang, C. (1999). “Estimation of software reliability
by stratified sampling.” ACM Transactions on Software Engineering and Methodology, 8, 263-283.

Poore, J. (1990). “A case study using cleanroom with box structures adl.” Report no., Software
Engineering Technology CDRL 1880.

Popov, P. (2002). “Proc. 21st int. conference on computer safety, reliability and security.” SAFECOMP,
Springer, 139-150, <http://dx.doi.org/10.1007/3-540-45732-115;..

Rao, J., Hartley, H., and Cochran, W. (1962). “On a simple procedure of unequal probability sampling
without replacement.” Journal of the Royal Statistical Society. Series B (Methodological), 24(2), 482-
491.

Selby, R., Basili, V., and Baker, F. (1987). “Cleanroom software development: An empirical evaluation.”
IEEE Trans. on Software Engineering, SE-13(9), 1027-1037.

Singh, H., Cortellessa, V., Cukic, B., Gunel, E., and Bharadwaj, V. (2001). “A bayesian approach to
reliability prediction and assessment of component based systems.” ISSRE 2001. Proceedings. 12th
International Symposium on Software Reliability Engineering, 12-21 (Nov).

Smidts, C., Cukic, B., Gunel, E., Li, M., and Singh, H. (2002). “Software reliability corroboration.”
Proceedings 27th Annual NASA Goddard/IEEE Software Engineering Workshop, |EEE, 82-87 (Dec).

Sridharan, M. and Namin, A. (2010). “Prioritizing mutation operators based on importance sampling.”
21st Int. Symposium on Software Reliability Engineering (ISSRE), 378-387 (Nov).

Strigini, L. and Povyakalo, A. (2013). Computer Safety, Reliability, and Security: 32nd International
Conference, SAFECOMP 2013, Toulouse, France, September 24-27, 2013. Springer Berlin Heidelberg,
Berlin, Heidelberg, Chapter Software Fault-Freeness and Reliability Predictions, 106-117.

Strigini, L. and Wright, D. (2014). “Bounds on survival probability given mean probability of failure per
demand; and the paradoxical advantages of uncertainty.” Reliability Engineering & System Safety,
128, 66-83.

Vogele, C., van Hoorn, A., Schulz, E., Hasselbring, W., and Krcmar, H. (2018). “WESSBAS: Extraction of

probabilistic workload specifications for load testing and performance prediction-a model-driven
approach for session-based application systems.” Software & Systems Modeling, 17(2), 443-477.

95

CcO

uDevOps

REFERENCES

Waseem, M., Liang, P, Shahin, M., Di Salle, A., and Marquez, G. (2021). “Design, monitoring, and
testing of microservices systems: The practitioners’ perspective.” Journal of Systems and Software,
182, 111061.

Zachariah, B. and Rattihalli, R. N. (2007). “Failure size proportional models and an analysis of failure
detection abilities of software testing strategies.” IEEE Trans. on Reliability, 56(2), 246-253.

Zhou, X., Peng, X., Xie, T., Sun, J., Xu, C., Ji, C., and Zhao, W. (2018). “Benchmarking microservice
systems for software engineering research.” Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings (ICSE-Companion), ICSE 18, New York, NY, USA,
ACM, 323-324.

96

	Contents
	Introduction
	Motivation
	The tester's challenge
	The main strategies

	Background on survey sampling techniques
	Terminology
	Assumptions
	The role of auxiliary information

	Acceptance testing as sampling
	Overview
	Adaptive allocation of test cases
	Selection of test cases
	SRSWR-based testing
	SRSWOR-based testing
	Stratified SRS testing
	PPS-based testing
	PPS-RHC technique
	Adaptive sampling technique
	Estimation

	Estiamting the operational profile
	Software operational profile
	Dealing with profile uncertainty
	Reliability modeling framework
	Estimation of variable profile

	Reliability testing
	Usage scenarios
	The method

	Performance and reliability assessment testing via OP-based sampling
	Definition of the operating conditions
	Ex-vivo testing
	Performance-reliability analysis

	System Testing for functional and robustness
	The specification-based testing method
	Overview
	MacroHive

	Conclusion
	References

