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Abstract

This document reports the results of Deliverable D3.1 of the µDevOps
project, entitled “Sampling-based Testing Techniques Design and Algorithms
for QoS Testing”. The type of the deliverable is marked as Report, and its
dissemination level is Public. The document will be made available through
the project’s website, https://udevops.eu/.

The document describes the techniques designed for testing
Quality-of-Service (QoS) attributes for microservices, namely reliability,
performance, security. The techniques also support testing for checking
functional correctness and robustness.

The structure is as follows: first, an overview on the key challenges
for testing, viewed in the context of Microservice and DevOps practices, is
given. Then, a background section explains the adopted terminology and
assumptions, the role of probabilistic sampling and of the auxiliary process-
related information it requires about the system under test. Then, the testing
techniques will be described with reference to the quality assessment and
quality improvement perspective.
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1 INTRODUCTION

1.1 MOTIVATION

The ultimate aim of testing is to expose potential failures that may impact
the user experience in operation. Engineers select and prioritize test inputs
according to the objective, e.g., checking functional correctness and/or
satisfying quality requirements, such as robustness, reliability, performance,
security. Failures, therefore, refer to deviations from such functional and
non-functional requirements (i.e., from the expected behaviour) – namely,
the system is said to fail when it does not satisfy these requirements.

Once failures are exposed, the natural following objective is then to
improve the software, by removing the identified failure’s cause. Therefore,
the next activity is debugging, which identifies and removes the underlying
cause (also known as fault or defect) of the exposed failures. However, it is
also extremely important for engineers (designers, developers and testers)
to know the extent to which the operating software will possess the quality
attribute of interest once will be deployed. Therefore, assessment, besides
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1.1. MOTIVATION

the improvement, is the further important objective, as it gives information
useful for decision-making (e.g., if the product is ready to release or needs
more testing, if quality is improving or not from release to release, ...). This
distinction resembles the debug testing vs operational testing view present in
the literature of 90’s Beizer (1997). The two perspectives differ in how tests
are derived – i.e., test generation criteria may differ because the objective
is different, as the former aims at fault detection while the latter accounts
for the expected operational profile to assess the runtime failure probability.
Also, in a testing-for-assessment the software is typically kept unchanged
for the whole duration of the testing session (debugging is done afterwards
to not bias the assessment), although this is not always the case (in fact,
the assessment can also be done during a testing-for-improvement session
via models – hence with no dedicated testing-for-assessment session - as
discussed in the next Section).

Apart from this latter case, testing for improvement and testing for
assessment usually occur in different phases of the lifecycle, depending
on the adopted development process, and require different pieces of
information. In a DevOps-driven development process for Microservices,
like the one we consider in this project, testing for improvement occurs: i)

during implementation (unit tests by developers), ii) during the continuous

integration, when evolving regression test suites are continuously run1,
1Continuous integration is a well-known practice in Microservice-Devops context, which runs automatic

integration tests to always have a working build of the system
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1.2. THE TESTER’S CHALLENGE

iii) during system testing, where the software is checked for functional
correctness and possibly robustness with respect to the specified system
requirements. Testing for assessment is typically run by the QA team in
the acceptance testing stage, i.e., to assess if predefined quality gates

(which are exactly those mentioned quality requirements, e.g., minimum
required reliability, performance, security) are satisfied. Acceptance testing,
unlike system testing, accounts for the user requirements (besides the
specified system requirements); a good acceptance testing session should,
in fact, consider the way in which the user is expected to exercise the
system, namely the operational profile. It aims at the quality-in-use, and
for a system to be accepted it does not just need to be compliant with the
specified system requirements, it must meet the user needs. The main
project’s aim is to support quality assessment – techniques presented in
Chapter 3. Though, we have also developed techniques for improvement to
be used in the system testing stage for checking functional correctness and
robustness, which will be presented in Chapter 4.

1.2 THE TESTER’S CHALLENGE

When testing for assessment, there are several challenges for testers. The
most important issue is the following: assumed that not all faults will be
detected in reasonable testing time, the problem for testing practitioners
is to identify which are those failure-causing inputs that are more likely to

3



1.2. THE TESTER’S CHALLENGE

impact the user experience in operation. Failure-causing inputs are, clearly,
unknown upfront, thus the challenge for testers is to select those that have
the largest impact on the expected failure probability in operation, so as to
get the best result with few tests.2 This goal is challenged by the following
issues:

• Efficiency and representativeness. “Getting the best result with few
tests” is of paramount importance for feasibility and scalability of
testing: with the huge input space of today’s large software systems,
it becomes harder and harder to find the “best” failure-causing inputs
in reasonable testing time. In critical systems, it may be very hard to
expose the few failures, and a lot of tests might be required.
It is worth to note that the goal for a tester should not merely be
to make the system fail (which can be achieved, for instance, by
robustness testing), but should be to spot failure-causing inputs
most frequently occurring in operation Cotroneo et al. (2013), which
is much trickier – that is what representativeness refers to.
This challenge involves not only the efficient test generation/selection
phase, but also the planning phase when testing resources need to
be allocated to different parts (e.g., components, modules, or input
partitions) of a system.

2Note that large impact is not (or at least not only) meant in terms of severity of the caused failure, but
is in terms of frequency of occurrence of the failure caused. Severity can be a further variable to consider if
relevant.
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1.3. THE MAIN STRATEGIES

• Uncertainty. The way in which the software will be used is generally
not known (at least not exactly) at testing time – technically speaking,
the operational profile is unknown. Generating representative tests
is therefore difficult. Luckily, this problem – historically a big hurdle
for techniques based on the operational profile estimates - can be
smoothed today by the agile development practices: in fact, with the
need of continuous feedback, data from the filed are readily available
and much more is known about how the software is being used and
about its failures – a rich source of information that testers should
exploit to drive to improve efficiency and accuracy of testing.
This is the situation we encounter in Microservice-DevOps
development, where continuous monitoring is a key principle
and turns out to be very useful to drive testing.

1.3 THE MAIN STRATEGIES

Acting without knowing the effect of taken actions is a further source of
uncertainty. Testers need to know with reasonable accuracy what quality
level their software achieved. Does it need more testing? Are there parts
that need more testing than others? Which part is contributing more
to quality? Is the product ready for release? Can I demonstrate, with a
certain level of confidence, that the product is ready? Quality assessment is
paramount for these questions. Depending on the quality attribute, there
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1.3. THE MAIN STRATEGIES

are several techniques for assessment, roughly divided in model-based,
measurements-based, hybrid. Some of these are mentioned in Deliverable
D2.1 of the project. If we look at reliability, one for which the literature is
abundant, the assessment can be achieved i) during testing or ii) by testing:

Software reliability growth models (SRGM).

SRGM observe the fault detection and correction process occurring during

testing (i.e., they do not influence testing, but just use observed data) to fit
a model projecting the expected improve reliability as result of testing and
debugging. With SRGM, failure data observed during testing and debugging
are used to build (parametric and non-parametric) models predicting the
next time to failure, thus failure intensity at the end of testing. In this case,
detected faults are removed (i.e., code is changed), and reliability grows
during testing: the goal is to figure out when debug testing can be stopped. A
plenty of SRGMs exist in the literature, all trying to capture the possible fault
detection patterns of a testing process (e.g., Goel (1985); Goel and Okumoto
(1979); Gokhale and Trivedi (1998); Ohishi et al. (2009)). The criticisms
of this approach lie in their numerous assumptions due to the difficulties
in modeling the complex factors involved in a real testing and debugging
process Almering et al. (2007). When used, SRGM consider data during
“development” testing Musa (1996), hence during testing-for-improvement,
preferably during system testing since they are considered closer to the
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expected operational usage.

Sampling-based testing

In alternative to, or besides, assessing during testing, researchers proposed
testing techniques to probabilistically assess reliability by running a
dedicated testing session, without changing the code with debugging
(hence with code frozen) in which the software is exercised with inputs
more likely to occur at runtime (i.e., according to the operational profile).
This is an acceptance testing scenario, and in the case of Microservice-
DevOps process, it matches with the quality gate identification by the QA
team before release.

In this case, probabilistic sampling techniques can be used, which
allows for treating the failure probability estimation problem as statistical
estimation problem of a parameter of interest. Although test cases can be
selected by a uniform distribution (i.e., what is known as random testing),
the idea to get an unbiased estimate of the failure probability in operation
is to sample test cases according to the operational profile (i.e.,, by a
distribution depending on the expected usage of functionalities). Many
papers referred to the latter as operational testing, and it is a pillar of
reliability testing (although can be used for other quality attributes too,
as we claim in this project). It was adopted for certification testing in the
Cleanroom methodology Mills et al. (1987), Currit et al. (1986), Cobb and
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Mills (1990), Linger and Mills (1988), Poore (1990), and in the Software
Reliability Engineering Test process Musa (1996). More recent work
improved operational testing either in terms of adaptiveness to allocate
test cases or of test selection scheme. Adaptive testing was proposed by
Cai et al., based still on operational profile but foreseeing adaptation in
the assignment of test cases to input domains Cai et al. (2004), Cai et al.
(2008), Cai (2002). The authors formulate testing as an adaptive control
problem using controlled Markov chains, with the goal of minimizing the
variance of reliability estimator. In Lv et al. (2014b), it is used along with
a gradient descent method to the same aim, while in Lv et al. (2014a), it
exploits confidence intervals as driving criterion to select tests adaptively.
In terms of test selection, few approaches went beyond the basic simple
random sampling with replacement (SRSWR) scheme. In Podgurski et al.
(1999), authors propose to estimate reliability by stratified sampling. Cluster
analysis is applied to execution profiles to stratify captured operational
executions, and then sampling within strata is without replacement, which
is known to be more efficient than the with-replacement counterpart. There
is no adaptiveness to online test outcomes, though. In a PhD proposal
Omri (2014), (non-adaptive) stratified sampling is still proposed, combined
with symbolic execution to stratify profiles. Further approaches to assess
reliability (and/or its bounds) are available that use failure data and possibly
other evidence, based, for instance, on Bayesian approaches or uncertainty
quantification Gashi et al. (2009); Popov (2002); Singh et al. (2001); Strigini
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and Povyakalo (2013); Strigini and Wright (2014), but are outside the scope
of this work, as they do not target testing strategies.

Note that sampling-based testing also suffers from the same problems
of efficiency and uncertainty mentioned at the beginning of this Section.
We aim to overcome them via advanced sampling techniques and proper
modelling of the operational profile, as presented in the next Chapter.

9



2 BACKGROUND ON SURVEY SAMPLING
TECHNIQUES

We advocate the use of sampling to address the efficiency issue, and the
continuous monitoring available in a Microservice-DevOps context for the
representativenss issue. These support the testing-for-assessment strategy
described in the next Chapter.

The objective is to provide an estimate of the quality attribute of
interest that is unbiased (hence, its expectation is the true value) and
efficient (namely, with a minimal variance, that implies high confidence, or,
conversely, with a small number of test cases given a minimum confidence
in the estimate we want to have).

Statistical sampling methods are a natural way to cope with this
problem, as their goal is to design sampling plans tailored for a population
to study, and provide estimators with the mentioned properties. Specifically,
while unbiasedness (and other basic properties, like consistency and
sufficiency Pham (2006)) are easier to obtain, the driving principle to select

10



2.1. TERMINOLOGY

an estimator is its efficiency in relation to the number of observations
required.

However, the literature on sampling-based software testing proposed
very few attempts to go beyond the conventional random or operational
testing. The latter ones have been extensively proposed in the past to assess
reliability, meant as probability of not failing in operation Musa (1996), Currit
et al. (1986); Poore (1990); Selby et al. (1987); but all are instances of simple
sampling schemes that, even though provide unbiased estimates, require
a large number of test cases for a desired confidence, especially when few
residual faults are in the software (e.g., in critical systems).

2.1 TERMINOLOGY

This Section introduces the terminology adopted in the following. Testing a
program is the process of i) exercising it with different test cases, selected
from the set of all possible inputs according to a selection criterion, and
ii) observing the output, comparing it with the expected one such that,
if they are discordant, a failure is said to have occurred. For what said
previously, a deviation from the expectation regards also non-functional
quality attributes, such as reliability (e.g., value failure, crash) performance
(e.g., response time is greater than specified) or security (e.g., vulnerability
exploited). Inputs provoking failures are called failure-causing inputs or
failure points. When a failure occurs, a change is made to the program to

11



2.1. TERMINOLOGY

remove what is believed to be the cause of the failure, or “fault”.1 Since
there may be several possible changes able to avoid the failure, the fault
related to an observed failure is not uniquely defined. We thus rely on
the notion of failure, rather than that of fault, and borrow the concept of
failure region of the input space (as in, e.g., Frankl et al. (1998), Zachariah
and Rattihalli (2007)). A failure region is the set of failure points that is
eliminated by a program change aimed at removing the fault. An input point
t is characterized by a predicate: zt = 1 if the execution leads to a failure,
namely, it is a failure point; zt = 0 otherwise.

An operational profile is a quantitative characterization of how a
system will be used. It is built by assigning probability values to all input
cases representing the probability that each will occur in operation. Thus, it
can be thought as a probability distribution over the set of the input points
D. We denote this distribution with P , that assigns a probability pt to each
input t ∈ D. In operational testing, assuming a perfect estimate of the
operational profile, pt is also the probability that the input t will be selected
during testing. But in the real world, the profile estimate is affected by an
error, and another probability distribution is actually used to select test
cases. We denote this distribution with P̂ , and its probability values with p̂t.

1A vulnerability is viewed as a fault for what said.
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2.2. ASSUMPTIONS

2.2 ASSUMPTIONS

We do the following assumptions:
1. Each test case leads the software under test to failure or success; we

assume we are able to determine when a test is successful or not
(i.e., perfect oracle).

2. Test case runs are independent; namely, all the non-executed test
cases are admissible each time. The execution of a test case is
not constrained by the execution of some other test case before.
This affects the way in which a “test case” is defined, since, if the
assumption is not met, a set of tasks can be grouped together in a
single test case, so that at the end of the test case the system goes
back to the initial state Lv et al. (2014b).

3. The output of a test case is independent of the history of testing; in
other words, a failing test case is always such, independently from
the previously executed test cases (i.e., the failing behaviour is not
masked by the execution of some previous test cases).

4. If a test case exposes a failure, the debugging action is performed
without introducing new faults (perfect debugging) and all the
failure points of the corresponding failure region are corrected,
so that re-executing an input of that region does no longer cause
a failure. In any case (successful or not), the test case will be no
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longer repeated in the future (sampling without replacement).
5. The input domain D is decomposed into a set of m subdomains:

{D1, D2,. . . , Dm}. The number of subdomains and the partitioning
criterion are decided by the tester. In general, there are several
ways in which a tester can partition the test suite, provided that
test cases in a partition have some properties in common (e.g.,
based on functional, structural, or profile criteria). These are usually
dependent on the information available to test designers and on
tester’s objective. The choice does not affect the proposed strategy,
which just assumes the presence of subdomains, but of course
different results can be obtained according to it. The effect of
different partitioning on results is out of the scope of this paper and
is left to future research.

For each subdomain, we define the probability of selecting a failure
point from Di as: φi = θi

∑
t∈Di

pt, where ∑t∈Di
pt is the probability of

selecting an input from Di, and θi is the probability that an input selected
from Di is a failure point. Thus, the true value of the quality attribute of
interest for a given randomly selected input is computed as:

Q = 1− Φ = 1−
m∑
i=1

φi (2.1)
where Φ is the operational failure probability. This is the typical derivation
done with reference to reliability (Q = R) in the literature Cotroneo et al.
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(2016); we generalize to the other quality attribute, given the notion of failure
discussed above. In an entire execution with N independent demands, the
estimation becomes:

QN = QN (2.2)

2.3 THE ROLE OF AUXILIARY INFORMATION

The key to improve the efficiency of sampling, hence to get the estimate
with a high accuracy and few tests, is to use auxiliary variables. In general,
we do not know the value of the variable to estimate; but if know some
information that we guess is correlated with the variable of interest, than we
can exploit that variable in the sampling process. This is known as probability-
proportional-to-size (PPS) sampling.

Also, if we know that the variable of interest can be partitioned in
classes in which it is likely to have homogeneous values (e.g., equivalence
classes in testing), then we can exploit this knowledge to stratify the
population (i.e., the input domain) and sample from the classes (called
strata). This can improve efficiency too. We have assumed in the previous
Section that such partitioning is possible.

Our variable of interest is the probability of failure ϕ, that is the
sum of φi over all partitions. So, we can exploit all what we know about
this variable. Since we are considering the acceptance testing stage in
Microservice-DevOps and the continuous feedback coming from the field,

15



2.3. THE ROLE OF AUXILIARY INFORMATION

we have access to a large amount of information that can be used to orient
the sampling strategy. For instance:

• If the tested units corresponds to equivalence classes in partition-
based testing, the partitioning criterion is itself an example of belief
of tester, who judges some ranges of values more prone to failure
while others are deemed correct. It is constitutive of partitioning to
assume that inputs within a partition have a homogeneous failing
behaviour, and the partitioning criterion establishes this assignment.
For instance, boundary values are usually expected to fail more
often than in-range values. A similar concept applies for defining
the “choices” within categories in category-partition testing Ostrand
and Balcer (1988). The idea is to exploit such a belief not only for
fault detection during development-time testing, but also for quality
assessment during acceptance testing.

• If the tested units corresponding to Di are components in a
component-based system, then the observed failure data during the
previous phases of testing, or from the field (hence from previous
releases), are a source of knowledge to exploit. In particular,
inter-failure times can be used to build software reliability growth

models (SRGMs) for the components under test, or other kinds of
models (e.g., machine learning models) to predict the failure of each
component/module or input partition.

16



2.3. THE ROLE OF AUXILIARY INFORMATION

• When the tested units are software modules, then results of module-
level testing (e.g., detected/corrected defects, level of coverage,
amount of testing or, generally, V&V effort) are informative about
their quality.

• Other examples of information contributing to form the tester’s
belief are discussed in several papers proposing Bayesian inference
to formalise and quantify the belief Neil et al. (2000); Singh et al.
(2001); Smidts et al. (2002), such as code characteristics (e.g.
complexity metrics are often used as predictor for defect proneness
by machine learning Catal and Diri (2009)), domain expert opinion,
characteristics of the testing and of development process.

Sampling-based testing uses this auxiliary information combined with
the operational profile expectation, whose estimate is readily available
from field data in a DevOps context, in an unequal probability sampling
design to select tests most impacting the failure probability. The sampling

design establishes which (combination of) sampling techniques, within the
family of probabilistic sampling, is better to use for the particular input
domain of interest. Thus, the specific algorithm will depend on: i) the input
space (inputs are modelled as 0/1 values, denoting correct/failing inputs,
respectively), and on ii) the information available about failure proneness
and profile. For instance, as for the input space: if the input domain can
be easily split in homogeneous subdomains (i.e., with low intra-group
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variance) and so that the variance between subdomains (i.e., inter-group
variance) is high, then stratification with unequal sampling probability of

strata and with replacement (to allow multiple tests for each subdomain) is
a good sampling strategy. Instead, if stratification is not advisable, unequal

probability sampling of single inputs is preferred Lohr (2009). In such a
case, without-replacement selection is better, even though its mathematical
treatment is more complex, because it is known to be more efficient than
with-replacement schemes. Generally, unequal probability sampling is the
required underlying framework in all the cases, as it allows having selection
probabilities deviating from the operational profile (hence, integrating any
testing profile in the sampling strategy) while preserving unbiasedness and
improving efficiency.

In this project, we have defined several sources of information about
quality attributes that can be used. Figure 4.1 reports the information we
defined in WP2. This regards usage (i.e., profile) and failing behaviour as
mentioned, but also architectural and behavioural models that can help
identifying the dependencies between the modules and tell which module
requires more testing.

As explained in Deliverable D2.2, the learning engine takes data
gathered from monitoring and a specification of the decision (i.e., the SQA
objective) to pursue. Based on this, the proper learning algorithm is used,
with associated pre-processing steps when needed, and gives, as output,
the prediction supporting that decision.

18



2.3. THE ROLE OF AUXILIARY INFORMATION

Logs, Traces, Topology, Ticket/Issue Reposotitories, alerts…

User-level (e.g., response time, latency, throughput, #failures, …), system-level (e.g., MS I/O, internal
errors/exception, resources such as CPU, memory, disk, power cons., network), static metrics (e.g., 

code features (e.g., churns), process metrics (e.g., git metrics)), …

Source

Metrics (from D2.1)

Models

Usage Failing beh. Architecture Behavioural

Profile models
- Stateful (e.g., 

via DTMC)
- Stateless (e.g., 

via Bayesian
inference)

- Non-stochastic

Architecture-based
- Stateful (e.g, 

MRM, SPN, SRN)
- Stateless (e.g,. 

RBD, FT)
Black-box
- e.g., SRGM, FT

E.g., Communication
graph inference, 
deployment
information

E.g., inferred FSM, 
I/O invariant in 
infeence (e.g., 
Daikon.like tools)

D2.2: 
LEARNING ENGINE

Data

Pre-processing
- E.g., dimensionality
reduction, normalization, 
clustering, features ranking

Classification, Regression; 
Time series forecasting;
Causal Inference

Components/Nodes Dependencies

WHAT TO LEARN: 

Homogeneous
Formatting

Fault avoidacne Fault tolerance Fault removal Fault/Failrue
prediction

Anomaly Detection

Testing (fault detection, 
prioritization)

Error detection & 
recovery; 
reconfiguration

Shall support
decisions
about:

Diagnosis, RCA (e.g., 
of performance 
issues)

Defect prediction, 
time series forecast

Other QA 
activiteis

Deployment, 
test/resource
allocation, 
configurations

Component/Node Quality Attribute (e.g., Expected
Failure Prob. (Reliability), Performance, Power ,…)

Dependencies-related parameters: e.g., 
transition probability in a DTMC model

Energy hotspots
detection

Figure 2.1. Context of use for the learning engine.
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The last box shows that such knowledge can support several decisions
(not only testing), although in this WP3 we care about testing. Some of
these decisions, such as defect prediction, performance/energy bottlenecks
detection, root cause analysis, will indirectly support testing: e.g., predicting
a module as more defective or diagnosing it as more frequent failure root
cause, suggests more testing for that module.

In this WP we focused the attention on: i) operational profile
information, ii) observed failure data about incorrect output, long response
times, security issues. These are learnt through ML models and used by the
sampling schemes we define in the next Section. The same algorithms can
be used with any quality-assessment task and with any variable of interest
(e.g., static metrics for defect prediction).

A final note about the objective of testing: so far we have described
everything as a test generation problem, in which we have to select inputs
from the whole input domain and use them as test cases. In the project, we
also face another problem, namely how to select or prioritize tests from a set
of existing test cases (i.e., a test suite) in order to augment the fault detection
(which is a different goal than quality-assessment testing, it is for quality-
improvement). This is a situation typical of DevOps cycles, where regression
testing is a pillar. Test selection & prioritization for quality improvement are
better dealt with machine learning models, as they are not amenable to be
formulated as sampling (there is no quantity to estimate). We used learning-
to-rank strategies for this, as explained in D2.2, for correctness issue. This is
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2.3. THE ROLE OF AUXILIARY INFORMATION

particularly important for security testing. In fact, in that case, tests are sets
of attacks that try to exploit vulnerabilities, and often come with pre-defined
attempts to exploit the vulnerability. In such a case, the problem resembles
more tests selection & prioritization than tests generation – namely, which
vulnerability is worth to investigate first, which type of attack is worth to be
launched first.
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3 ACCEPTANCE TESTING AS SAMPLING

3.1 OVERVIEW

This Section reports the sampling-based testing algorithms we use for
the acceptance testing stage (e.g., to check for the quality gates) in
a Microservice-DevOps context. These algorithms use the auxiliary
information defined in Section 2.1 to assess a quality attribute of interest.
We first present the algorithms we developed. Then, examples of application
for reliability and performance assessment of Microservice applications are
reported.

The objective of sampling-based testing is to provide an unbiased
estimate of quality attribute of interest Q , denoted as Q̂. A “good”
estimator is sought, namely an estimator that is unbiased and efficient (i.e.,
with variance as low as possible given T tests to run).

Assume a system can be represented, without loss of generality, as a
set of modules indicated with Di interacting to each other. In the context
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3.1. OVERVIEW

of this project, the modules are microservices in a microservice architecture
(MSA). In general, they can be architectural components, or partitions of the
input domain.

The two main stages required for testing are:
• Test cases allocation, where the number of tests for each service

are decided. This could be done by several methods, such as:
giving more tests to bigger services; giving more tests to services
judged as more critical (by domain experts); using historical data
or design information about the expected defectiveness to spot
critical services (e.g., via defect prediction) or to allocate tests by
optimization models (e.g., Huang et al. (2002)Pietrantuono et al.
(2010)). Whatever the initial allocation is, it can be then adjusted
with time, especially in a DevOps context where continuouos
feedback can be helpful. Several strategies use the feedback over
iterations to change the allocation of tests to each module for the
next iteration Cotroneo et al. (2016); Pietrantuono et al. (2020a);
Pietrantuono and Russo (2016). The output of the allocation stage is
the assignment of a number of test cases to run to each service Di,
denoted as Ti.

• The second stage is about input selection, where the algorithm(s)
derive the test inputs by selecting an input from domain Di of
the microservice i under test. These will form the Ti test cases
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from domain Di. In the following, several selection techniques

are presented, whose applicability are a trade-off between the
knowledge that a tester could exploit to improve the input selection,
the technique performance, and its implementation complexity.
Note that the term “selection” refers to the input space; from the
testing point of view, this selection is a “generation” of test cases.1

All the techniques select test cases based on a more or less in-depth
knowledge of the operational profile. A profile P is defined as a probability
distribution where each input t has an expected occurrence probability pt.
With respect to knowledge of P , the techniques will generally consider each
input either singularly or grouped by classes with similar characteristics
(e.g., all inputs of a functionality, inputs of an equivalence class, etc.).
To take the more general case, we consider an occurrence probability pt

assigned to each input t ∈ D. Thus, if no information is available at all about
expected occurrence of inputs, we have pt = 1/|D| (i.e., same probability
to all inputs). If a tester has information at (micro)service level, a pi value is
assigned to the entire domain Di assuming the within-domain distribution
being uniform with pt = pi/|Di|. If a tester distinguishes between classes
of inputs within Di, then different pj values are given to each class (and
uniform distribution within the class). Knowledge of the profile is initially
assumed to be exact, like in most related literature Cai et al. (2004), Cai et al.
(2008), Lv et al. (2014b), Cai (2002), but it is progressively updated with

1Test selection is a different problem, where tests from an existing test suite need to be selected
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3.1. OVERVIEW

observations coming from the monitoring, hence the assumption quickly
becomes non-impacting thanks to the availability of field observations in
the Microservice-DevOps context. The profile estimation updated is done
by a strategy we devloepd based discussed in the next Section. It could also
be done by ML models.

To recall the above notation: for each domain Di, we have: φi =
θi
∑

t∈Di
pt, where∑t∈Di

pt is the probability of selecting an input from Di,
and θi is the probability that an input selected from Di is a failure point.
The quality attribute (e.g., reliability) for a randomly selected demand is:
Q = 1 − Φ = 1 −

∑m
i=1 φi where Φ is the operational failure probability.

After N demands, it becomes: QN = QN . The estimate of Q is computed
from domain-level estimates:

Q̂ = 1−
m∑
i=1

φ̂i = 1−
m∑
i=1

pi · θ̂i (3.1)

where pi =
∑

t∈Di
pt, while θ̂i is the sought estimate of the probability that

an input selected fromDi is a failure point. In the following, we can therefore
refer to the estimation of θ̂i values. The variance of the estimator, which is
of interest to evaluate its efficiency, being the θ̂i values independent of each
other, is:

V (Q̂) = V (Φ̂) =
m∑
i=1

p2iV (θ̂i)

(3.2)
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3.2. ADAPTIVE ALLOCATION OF TEST CASES

3.2 ADAPTIVE ALLOCATION OF TEST CASES

Adaptiveness aims at periodically re-allocating tests to improve the estimate
efficiency in terms of variance. It iteratively assigns a subset of total test cases
(T ) available at every iteration (e.g., at every release) to domains, giving
more tests to domains (e.g., to microservices or microservices’ equivalence
classes) with a bigger expected variance. At iteration k = 0, a subset T (0)

of tests is distributed to the domains. As mentioned, we have used several
alternatives for this (e.g., Pietrantuono et al. (2020a), Cotroneo et al. (2016));
we assume the simplest one, assuming that no information is available, and
perform a size-proportional allocation2: T (0)

i = T (0) · |Di|
|D| . At next iterations,

test cases are distributed by weighting the number of tests (T (k+1)) foreseen
for iteration (k+1): T (k+1)

i = T (k+1)ω
(k)
i . In the following, we describe the

method implemented to determine ω
(k)
i and T (k+1). A simple solution is to

keep on allocating tests proportionally to domains size, hence ω
(k)
i = |Di|

|D| .
However, as the goal is to minimize the estimate’s variance, allocation needs
to be proportional not only to size, but also to variance. Assuming the costs
to select a test case across domains approximately equal, it can be shown
that the optimal allocation scheme is the Neyman allocation Lohr (2009),

2In adaptive allocation, the number of samples at the first iteration (T (0)) is only required to be much

smaller than T Sridharan and Namin (2010), in order to start the algorithm
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3.2. ADAPTIVE ALLOCATION OF TEST CASES

where weights are proportional to size and standard deviation:
T

(k+1)
i = T (k+1) · ω(k)

i = T (k) |Di|
√
V (θi)(k) · pi∑m

j=1 |Dj|
√

V (θj)(k) · pj
(3.3)

However, the true within-domain variances of θi are unknown. Thus,
at each iteration, the estimates of V (θi) have to be provided by the test
selection scheme adopted at domain-level (discussed in the next Section). To
implement a robust adaptation with respect to fluctuations of such variance
estimates, we do not directly use Equation 3.3, but an adaptive importance

sampling (AIS) algorithm.
Importance sampling aims at approximating the true distribution

of a variable of interest Fox (2003). Our true unknown distribution is the
best number of test cases for each domain that minimizes the variance of
reliability estimator. The algorithm represents the beliefs (i.e., hypotheses)
about this distribution by means of sets of “samples”. Each sample is
associated with a probability that the belief is true: at each iteration,
these probabilities are updated by examining some new samples of that
hypothesis, and a larger number of samples (i.e., test cases) are drawn
from hypotheses with a larger probability. The goal is to converge, in few
iterations, to the “true” best distribution of test cases.

To establish how the probability of each hypothesis is updated based
on new collected samples, an update rule is defined. Let us denote with
π(k) the probability vector representing, for each domain, the likelihoods
that testing from that domain contributes to minimizing the variance of the
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3.2. ADAPTIVE ALLOCATION OF TEST CASES

estimator. This information is well represented by weights ω(k)
i . Using the

variance estimates of θi in lieu of true (unknown) variances in Equation 3.3,
the update rule of the probability vector π(k) is defined as follows:

π
(k)
i = γπ

(k−1)
i + (1− γ) · (1− π

(k−1)
i ) · ω̂(k)

i (3.4)
The rule tends to assign progressively more tests to domains with

higher variance of the estimator, so as to diminish its impact on the
overall variance. Given the same weights ω

(k)
i , the increase is larger

for domains that had fewer resources at the previous iteration. The
smoothness of adaptiveness is further is determined by γ ∈ [0, 1],
regulating how the algorithm considers past iterations’ results with
respect to current ones. The π

(k)
i values are normalized, since they are

probabilities (π(k)
i = (π

(k)
i )/(

∑
i∈D π

(k)
i )). Starting from π

(k)
i , the bucket-

filling procedure reported in ? is used to distribute the tests to domains, so
as T (k+1)

i ≈ T
(k)
i π

(k)
i ∝ T

(k)
i ω̂

(k)
i .

To determine the proper T
(k)
i at each iteration, we consider the

adaptive implementation of importance sampling Fox (2003). Based on a
desired error and confidence, this variant tends to progressively reduce the
number of required samples as more information becomes available, so as
to approximate the sought distribution earlier. Accordingly:

T (k+1) = 1
2ξ
χ2
ρ−1,1−δ ≈

ρ−1
2ξ

{1− 2
9(ρ−1)

+
√

2
9(ρ−1)

z1−δ}3 (3.5)
where: ξ is the error that we want to tolerate between the sampling-based
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estimate and the true distribution; 1 − δ is the confidence we want in this
approximation; ρ is the number of domains from which at least one test
case has been drawn in the k-th iteration; z1−δ is the normal distribution
evaluated with significance level δ.

The resulting number of T (k+1)
i test cases are run within each domain,

e.g., for each microservice, according to one of the techniques described in
the next Section: test results are in turn used to estimate the variancesV (θi),
hence allowing to update ω̂i (and πi) based on the new information.

3.3 SELECTION OF TEST CASES

We describe test selection techniques within domain Di of the i-th
Microservice by providing formulas to compute the failure rate estimator
θ̂i (needed in Equation 3.1), its variance V (θ̂i), and a correct estimator of
such variance V̂ (θ̂i) (needed in Equation 3.1 as well as in Equation 3.3 in
lieu of the unknown V (θ̂i)). The algorithms are based on our previous
work ?. The following description starts with the simpler case where simple
random sampling is exploited to select tests, and then proceeds by refining
the sampling scheme to better exploit available information for efficiency
improvement. Hence, the below techniques require increasing pieces of
information about the program under test, and this is a possible additional
criterion to choose between them, besides efficiency and bias. All the
steps described in the following refer to a given iteration k; we omit the
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3.3. SELECTION OF TEST CASES

superscript k in all the Equations for readability of formulas (e.g., T k
i is Ti).

Also, we denote: |Di| = Ni.
3.3.1 SRSWR-based testing

This first technique makes no assumption about (i) which input or class of
inputs (e.g., equivalence class) is more prone to fail within a domain Di; ii)

what is the expected operational usage of (class of) inputs/functionalities.
Tester just has information at entity level, namely, pi value is assigned to the
entire domain Di assuming the within-domain distribution being uniform,
i.e., for each input t: pt = pi/Ni. The simplest form, which is the common
one in the existing literature (e.g., Cai et al. (2008), Lv et al. (2014a), Cai et al.
(2004), Cai (2002), Lv et al. (2014b)), allows the same input t to be selected
more times, i.e., a simple random sampling with replacement (SRSWR)
scheme. Test outcomes are a series of independent Bernoulli random
variables zi,t such that zi,t = 1 if the execution leads to a failure, zi,t = 0

otherwise. Probability that zi,t = 1 corresponds to proportion: θi = ∑Ni
t=1 zi,t
Ni

.
An unbiased estimator of θi is the observed proportion of failure points over
the number of trials Ti:

θ̂iSRSWR
=

∑Ti

t=1 zi,t
Ti

. (3.6)
Accordingly, having assumed independent variables, the variance of
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the θ estimator is:
V (θ̂iSRSWR

) =
θi(1− θi)

Ti

(3.7)
being the numerator of Eq. 3.6 a binomial random variable. An unbiased
estimator of V (θ̂iSRSWR

) (i.e., such that E[V̂ ] = V ) is:
V̂ (θ̂iSRSWR

) =
θ̂i(1− θ̂i)

Ti − 1
(3.8)

using the Bessel-corrected version as unbiased estimator of a sample
variance V : V̂ = n

(n−1)V (n being the sample size). Although SRSWR
keeps the mathematical treatment relatively simple, it is unable to exploit
additional information a tester might have. The following techniques
improve the efficiency in terms of variance.
3.3.2 SRSWOR-based testing

This technique still makes no assumption about knowing failure proneness
of (classes of) inputs/functionalities or their operational profile. Differently
from the previous one, this technique uses a sampling without replacement

(SRSWOR), namely, the same test case is not selected twice. This technique
is expected to be more efficient in terms of estimator’s variance, as it avoids
sampling an input twice. The proportion estimator is still obtained as ratio
of observed failure points over tests executed:

θ̂iSRSWOR
=

∑Ti

t=1 zi,t
Ti

= pi · θ̂i (3.9)
Variance of the estimator, θ̂, is different. Being a without-replacement
scheme, the population units from which to sample are less and less. Thus,
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observations are not really independent. At the first draw, a test case t of Ti

tests to run is drawn out of Ni units; at the second draw, another test case
from the remaining Ti − 1 is drawn from a population of Ni − 1 units, and
so on. Defining a random variable πt = 1 if unit i is in the sample, πt = 0

otherwise, θ̂i can be expressed as ∑Ti

t=1 πt
zi,t
Ti

. Since πt are 0/1 variables,
E[πt] = E[π2

t ] = Ti/Ni, and V (πt) = E[π2
t ] − E[πt]

2 = Ti

Ni
(1 − Ti

Ni
).

Moreover: E[πtπt′] = P (πt′ = 1|πt = 1)P (πt = 1) = ( Ti−1
Ni−1)(

Ti

Ni
) –

namely, if we know that test t is in the sample, we do have a small amount
of information about whether test t′ is in the sample, reflected in the
conditional probability P (πt′ = 1|πt = 1). Thus covariance is not null and:
Cov(πt, πt′) = E[πtπt′] − E[πt]E[πt′] = − 1

Ni−1(1 − Ti

Ni
)( Ti

Ni
). Given these

preliminaries, and using properties of covariance:
V (θ̂iSRSWOR

) = 1
T 2
i
V (
∑Ni

t=1 πtzi,t) =

1
T 2
i

∑Ni

t=1

∑Ni

t′=1 zi,t, zi,t′Cov(πtπt′)) =

1
T 2
i
[
∑Ni

t=1 z
2
i,tV (πt) +

∑Ni

t=1

∑Ni

t′ ̸=t zi,t, zi,t′Cov(πtπt′)]

(3.10)

Using variance and covariance of πt, πt′ and taking out of the summation:
V (θ̂iSRSWOR

) =

1
T 2
i

Ti

Ni
(1− Ti

Ni
)[
∑Ni

t=1 z
2
i,t − 1

Ni−1

∑Ni

t=1

∑Ni

t′ ̸=t zi,t, zi,t′ ] =

1
Ti

Ti

Ni
(1− Ti

Ni
)( 1

Ni(Ni−1)
)[Ni

∑Ni

t=1 z
2
i,t − (

∑Ni

t=1 zi,t)
2] =

Ni−Ti

Ni

Ni

Ni−1
θi(1−θi)

Ti
= Ni−Ti

Ni−1
θi(1−θi)

Ti

(3.11)
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Hence, with respect to the SRSWR case, variance is modified by adding
what is called the finite population correction factor (Ni−Ti)

Ni
, accounting for

the fact that the population is finite, and using the Ni

Ni−1 factor to make it
unbiased.

An unbiased estimator of V (θ̂iSRSWOR
) is:

V̂ (θ̂iSRSWOR
) =

Ni − Ti

Ni

θ̂i(1− θ̂i)

Ti − 1
(3.12)

since:
E[Ni−Ti

Ni

θ̂i(1−θ̂i)
Ti−1

] = Ni−Ti

Ni
E[ θ̂i(1−θ̂i)

Ti−1
Ti

Ti
] =

Ni−Ti

Ni

θi(1−θi)Ni

Ni−1
1
Ti

= Ni−Ti

Ni−1
θi(1−θi)

Ti

(3.13)

using the fact that θ̂i(1−θ̂i)Ti

Ti−1 unbiasedly estimates θi(1−θi)Ni

Ni−1 .
Assuming Ti ≥ 1, SRSWOR is expected to be more efficient than

SRSWR, since its variance is expected to be smaller:
V (θ̂iSRSWR

)

V (θ̂iSRSWOR
)
=

Ni − 1

Ni − Ti

≥ 1 (3.14)
Since both SRSWR- and SRSWOR-based testing make the same assumptions
about the knowledge available to tester, the latter is preferred: we use
SRSWOR in the following for efficiency comparison, neglecting the SRSWR
case.
3.3.3 Stratified SRS testing

The above two strategies can be improved if a tester has knowledge about
which classes of inputs within Di are expected to have a common behaviour,
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i.e., by partitioning Di (e.g., equivalence classes for the domain Di of
microservice i). Regardless partitioning criteria, we denote as Ci,h the h-th
class within domain i, and Ni,h the number of elements within Ci,h.

If such information is available, stratified sampling (S-SRS) can be used
to instead of SRSWOR and SRSWR. In S-SRS testing, the proportion of failure
points is estimated by combining the proportions obtained in each class:

θ̂iS−SRS
=

1

Ni

Mi∑
h=1

Ni,hθ̂i,h (3.15)

whereMi is the number of classes and θ̂i,h the estimate obtained by Equation
3.9 for each class. Since the selection from classes is independent, variance
of the estimator is the linear combination of within-class variances:

V (θ̂iS−SRS
) =

1

N2
i

Mi∑
h=1

N2
i,hV (θ̂i,hSRSWOR

) (3.16)
Similarly, its unbiased estimator is:

V̂ (θ̂iS−SRS
) =

1

N2
i

Mi∑
h=1

N2
i,hV̂ (θ̂i,hSRSWOR

) (3.17)
using Equation 3.11 and Equation 3.12 in the two cases.

A task required by S-SRS is the assignment of test cases to classes. This
is the same problem we faced at domain-level, and assume, without loss of
generality, the same solution here: a “proportional allocation” in the first
stage (i.e., Ti,h =

Ni,h

Ni
Ti), and “optimal Neyman allocation” (Equation 3.3) in

the next stages when an estimate of variances becomes available.
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3.3.4 PPS-based testing

Besides information that allows partitioning of Di, let us assume to have an
estimate of the operational profile at class-level, along with some auxiliary
indication about the failure proneness of a class with respect to the others.
As discussed, the latter should be a driving principle of partitioning, wherein
classes of inputs are separated with respect to their supposed failing
behaviour. There are several methods to support the tester’s intuition with
quantitative figures about which functionality or class of inputs is more
likely to fail, especially considering that assessment is done at the end of
the development process, and much information is available. For instance,
the amount of testing, inspection or, generally, quality assurance activities
that a microservice received or the achieved code coverage suggest where
a high effort was devoted to assure few residual faults; historical failure
data, domain expert opinion, and other evidences can be used for such
an assessment as previously discussed. These all can contribute to have a
relative assessment of classes with higher expected failure rate3. However
is assessed, we call it failure likelihood, denoted as ϑ∈[0, 1]. The two
techniques explained in this Section just assume a rough proportionality of
the auxiliary information ϑ with the true (unknown) failure rate. Note that

3Failure rate of a class is meant as probability of failing given that an input is selected from that class; the
actual failure probability depends, of course, not only on the faults within the class, but also on the probability
of selecting an input from that class in operation, namely on the operational profile. Thus, this information is
later combined with the class-level operational profile
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this knowledge is just supposed to be better than knowing nothing about
the relative difference among failure rates.

In such a scenario, we change the problem formulation. Let us
consider the quantity to estimate being not the proportion of failure points,
but the total: φi =

∑
h pi,hθi,h =

∑Mi

h=1
pi,h
Ni,h

∑
t∈h zi,t =

∑
t∈Di

ptzi,t,
where pi,h is the probability of selecting an input from class Ci,h, and:
pt = pi,h/Ni,h, because of equal selection probability within classes4.
We define the auxiliary variable x associated with each input t such
that: xi,t = ptϑi,h where ϑi,h is the failure likelihood of the class. The
corresponding probability of selection of each input point t as test case is:
πt =

xi,t∑
t xi,t

. This is called proportional to size (PPS) selection Lohr (2009),
where the “size” is the variable x. If no knowledge about failure likelihood
is available, the method still works, but the higher the correlation between
x and φi the higher the efficiency.

Given this general scheme, selection of test cases can be done, again,
with or without replacement. Since Ni,h and pi,h values are known, we need
to estimate the total number of failure point Zi =

∑
t zi,t to get θ̂i and

φ̂i. In case of with-replacement selection, the estimator is the sample mean
of observed values rescaled by the inverse of their selection probability πt,
namely: Ẑi =

1
Ti

∑Ti

t=1
zi,t
πt

, known as the Hansen-Hurwitz estimator. Variance
4Note that unequal probability of selection could be seamlessly used in the method formulation, but the

information on the operational profile is rarely available at such fine level of granularity.
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is:
V (Ẑi) = E[(Ẑi − Zi)

2] =
1

Ti

[

Ni∑
t=1

πt(
zi,t
πt

− Zi)
2] =

1

Ti

(
Ni∑
t=1

z2i,t
πt

− Z2
i

)
(3.18)

With respect to the simple random sampling counterpart (SRSWR), this is
a generalization, since in SRSWR πt are equal to 1/Ni

5. If we consider the
corresponding without-replacement case (namely, PPS sampling without
replacement), we expect to obtain better variance than Equation 3.18.
Hence, we now consider the RHC scheme to estimate Zi.
3.3.5 PPS-RHC technique

This uses the Rao, Hartley and Cochran (RHC) sampling for selecting tests
according to PPS Rao et al. (1962). It acts as follows:

1. Given theTi test cases to execute inDi, divide randomly theNi units
of the population into g = Ti groups, by selecting G1 inputs with
a SRSWOR for the first group, then G2 inputs out of the remaining
(Ni − G1) for the second, and so on. This will lead to g groups of
size G1, G2, . . . , Gg with∑g

r=1Gr = Ni. The group size is arbitrary,
but we select G1 = G2 = · · · = Gg = Ni/Ti, as this minimizes the
variance Rao et al. (1962).

5Note that, the case of proportions θ of Equation 3.7 for SRSWR is similar, since θ(1 − θ) = θ − θ2 =∑
t zi,t/Ni −

∑
t z

2
i,t/N

2
i =

∑
t z

2
i,t/Ni −

∑
t z

2
i,t/N

2
i , since zi,t = z2i,t being zi,t a dihcotomic (0/1) variable.

Since proportions are “means” of the variable zi,t, while here we have a total, Equation 3.7 multiplied by N2
i

yields the variance of the total’s estimator Ẑi that is the same as Equation 3.18 with πt = 1/Ni
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2. One test case is then drawn by taking an input t in each of these g

groups independently and with a probability proportional to size –
in our case, according to πt values.

3. Denote with πt,r the probability associated with the t-th unit in the
r-th group, and with qr =

∑
t∈Gr

πt,r the sum in the r-th group. An
unbiased estimator of Zi is:

Ẑi =

g∑
r=1

πtzi,t
πr/qr

(3.19)
with zi,t = 1 if t is a failure point, 0 otherwise. The suffixes 1, 2, . . . , r
denote the g test cases selected from the g groups separately. This
leads to: θ̂iRHC

= Ẑi

Ni
, which is the sought proportion of failure points.

The estimator is unbiased since E[Ẑi] = E1E2[Ẑi] = E1[Zi] = Zi, where E2 is the
expectation for a given split and E1 the expectation over all possible splits
intoTi groups of the chosen sizes. Variance of Ẑi is derived by observing that,
under unbiasedness, V (Ẑi) = E1V2(Ẑi), where V2 is the variance within a
split:

V (ẐiRHC
) =

∑
r G

2
r −Ni

Ni(Ni − 1)

(
Ni∑
t=1

z2i,t
πt

− Z2
i

)
(3.20)

with∑r denoting the sum over the g = Ti groups. Its unbiased estimator is
derived in Rao et al. (1962) is:

V̂ (ẐiRHC
) =

∑
r G

2
r −Ni

N2
i −

∑
r G

2
r

(
g∑

r=1

qr(
zi,r
πr

− Ẑi)
2

)
. (3.21)

Choosing G1 = G2 = · · · = Gg = Ni/Ti, we have:
∑

r G
2
r−Ni

Ni(Ni−1)
= Ti(Ni/Ti)

2−Ni

Ni(Ni−1)
= 1

Ti

(Ni−Ti)
(Ni−1)

(3.22)
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Hence:
V (ẐiRHC

) =
1

Ti

(Ni − Ti)

(Ni − 1)

(
Ni∑
t=1

z2i,t
πt

− Z2
i

)
(3.23)

which clearly less than the with-replacement case in Equation 3.18. Thus
the without-replacement case is better, in terms of efficiency, than the with-
replacement case by a factor (Ni−Ti)

(Ni−1) . The sought variance of θ̂iRHC
and its

estimator are:
V (θ̂iRHC

) = V (Ẑi)

N2
i

V̂ (θ̂iRHC
) = V̂ (Ẑi)

N2
i

(3.24)
Let us compare RHC against the SRSWOR case (denoted, for brevity, SRS).
From Equation 3.11, writing θi =

∑Ni
t=1 zi,t
Ni

and recalling that zi,t = z2i,t, being
zi,t a 0/1 variable), we have that:

V (ẐiSRS
) = N2V (θ̂iSRS

) =
1

Ti

(Ni − Ti)

(N − 1)

(∑
t

Niz
2
i,t − Z2

i

)
(3.25)

Therefore, RHC (Equation 3.23) is more efficient if this condition is verified:
Ni∑
t=1

z2i,t
πt

<

Ni∑
t=1

Niz
2
i,t (3.26)

Considering that πt = xi,t∑
t xi,t

=
xi,t

Xi
=

xi,t

X̄iNi
, and Zi = Z̄iNi (X̄ and Z̄ are the

population means), the RHC variance becomes:
V (ẐiRHC

) =
(Ni − Ti)

(Ni − 1)
X̄i

Ni

Ti

Ni∑
t=1

1

xi,t

(zi,t −
Z̄i

X̄i

xi,t)
2 (3.27)

Expanding the expression and recalling that Cov(X, Z
2

X ) = E[X, Z
2

X ] −

E[Z
2

X ]E[X], condition in Equation 3.26 is verified if and only if Cov(X, Z
2

X ) >

0. But in PPS sampling, X is supposed to be roughly proportional to Z, thus
their covariance should be at least positive. RHC turns out to be worse than
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SRSWR only in the case that auxiliary information is negatively correlated
with the variable to estimate, which is a worse situation than a complete
absence of knowledge about more or less failure-prone classes (i.e.,
knowledge is even misleading). In practice, an even partial knowledge (e.g.,
inputs from boundary-value regions more likely to fail than others) can
suffice to distinguish more failure-prone classes; without such knowledge,
partition testing is not convenient from the assessment point of view.
3.3.6 Adaptive sampling technique

Network structure

With this strategy, the test case space is represented as a network where
each node is a module Di and links between nodes represent a dependency
between the tester’s beliefs about the failure probability of the linked
services. The idea is that the failure probability assigned to a service may
affect the belief about the failure probability of another service (e.g., if there
is a strong similarity between the two, according to some similarity metric).

Given the failure probability P (i)=f̂i and P (j)=f̂j of two services,
the link is intended to capture the joint belief that a test case from both
modules will fail. To this aim, each link between a pair of nodes < i, j >

is associated with a weight wi,j defined as the joint probability of failure
of i and j: P (i ∩ j) = P (i|j) · P (j). The conditional probability of failure
P (i|j) is the probability for a service i to fail conditioned on the fact that
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a failure is observed in the j-th service. P (i|j) depends on the distance in
an inversely proportional way: the smaller the distance, the more similar
the two services, and the bigger the conditional probability of failure. We
represent this relation by: F (d) = 1

d , hence: P (i|j) = P (i)1d with d > 0,
but other distance functions can be conceived. Consequently, weights are
defined as: wi,j = f̂j f̂i

1
d , and, since they are based on failure probabilities,

they can be also updated at run time by monitoring data.

Test generation algorithm

The algorithm for test cases generation is encoded as an adaptive sampling
design on the defined network structure, in which the generation of the
next test case depends on the outcome of the previous ones. Given a testing
budget in terms of number of test cases to run, the goal is to derive tests
contributing more to an efficient (i.e., low variance) unbiased estimate.
Sampling adaptivity is a feature that allows spotting rare and clustered units
in a population so as to improve the efficiency of the estimation Lohr (2009)
– this makes such a type of sampling suitable for testing problems, especially
in late development and/or operational phase, since failing demands are
relatively rare with respect to all the demands space and are clustered. we
generate one test case at each step. In a given step, the algorithm aims
at selecting the test frame with higher chance of having failing demands.
The exploited design is the adaptive web sampling defined by Thompson
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for survey sampling problems Horvitz and Thompson (1952). Within the
selected test frame, a test cases is generated by drawing a demand according
to a uniform distribution – namely, each demand with equal probability of
being selected.

Specifically, at the k-th step, we combine two techniques (i.e., two
samplers): a weight-based sampler and a simple random sampler to select
the next test frame. The weight-based sampler (WBS) follows the links
between frames, in order to identify possible clusters of failing demands.
This depth exploration, useful when a potential “cluster” of failing demands
is found, is balanced with the simple random sampler (SRS) for a breadth
exploration of the test frame space, useful to escape from unproductive
local searches. At each step k, the next test frame is selected by a mixture
distribution according to the following equation:

qk,i = r
wak,i

wak+

+ (1− r)
1

N − nsk

(3.28)
where:

• qk,i is the probability to select test frame i;
• N : is the total number of test frames;
• sk is the current sample, namely the set of all selected test frames up

to step k;
• nsk is the size of the current sample sk;
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• ak is the active set, which is a subset of sk along with the information
on the outgoing links;

• ak,i is the set of the outgoing links from test frame i to test frames not
in the current sample sk;

• wak,j =
∑

i∈ak wi,j is the total of weights of links outgoings from the
active set;

• wak+ =
∑

i∈ak,j∈s̄k wi,j;
• r between 0 and 1 determines the probability to use the weight-based

sampler or the random sampler.
The selection of the first test frame is done by SRS, and the active set

is updated. Then, at each iteration, if there are no outgoing links from the
active set (i.e., no link with a weight greater than 0), the SRS is preferred, so
as to explore other regions of the test frame space. Otherwise, the selection
of the sampler is dependent on r. When WBS is used, the selection is done
proportionally to the weights – first term of Eq. 3.46. Such a disproportional
selection is then counterbalanced in the estimator preserving unbiasedness.
When SRS is used, the not-yet-selected test frames have equal selection
probability6 – second term of Eq. 3.46. The selected test frame is added to

6The scheme can be either with- or without-replacement, with few changes in the estimator Horvitz and
Thompson (1952); Eq. 3.46 is the without-replacement version, the with-replacement variant replaces 1

N−nskwith 1
N .
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the active set. All is repeated until the testing budget is over.
3.3.7 Estimation

After testing, the estimation is carried out. Let us consider the quality
attribute to estimate, for instance reliabilityR: R = 1−

∑
i xi = 1−

∑
i pifi,

where xi is the probability that a test case from i is selected and fails. During
testing, results in terms of failed/correct test cases are collected. Let us
denote with yi,t the observed outcome of a test case t taken from test
frame i, yi,t=0/1. In the general case, in which some failure data for test
frame i is available from the field, the estimate of fi is the updated ratio
of the number of failing over executed demands with inputs taken from
test frame i: f̂ ′

i = f̂i·ni+
∑mi

t=0 yi,t
ni+mi

, where ni is the number of demands with an
input from test frame i observed during operation and mi is the number of
demands taken from test frame i during testing (i.e., test cases). When no
data is observed for a test frame during operation, the estimate becomes:
f̂

′

i = ∑mi
t=0 yi,t
mi

. Additionally, in a without-replacement scenario, which can be
preferred under a scarce budget, mi = 1 and f̂

′

i = 0/1. The Thompson
estimator is tailored for our assessment problem, whose idea is to take the
average of the (SRS or WBS) estimators obtained at each step. The total
failure probability Φ is unbiasedly estimated as:

Φ =
1

n
(Nf̂

′

i +
n∑

i=2

zi); (3.29)
where:
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Nf̂
′

i is the total estimator at the first step k = 0 (the first observation taken
by the SRS);

zi is the total estimator obtained at step k = i, and
zi =

∑
j∈sk x̂j +

x̂i

qk,i
=
∑

j∈sk p̂j f̂
′

j +
p̂j f̂

′
j

qk,i
;

n is the number of executed test cases;
N is the total number of test frames.

3.4 ESTIAMTING THE OPERATIONAL PROFILE

In the above techniques, we have assumed to be able to estiamte the
operational prifle faithfully, thanks to the availability of data in Microservice-
DevOps context. In the following, we summarize the work done to define
a framework for operational profile estimation from data, published in
Pietrantuono et al. (2020a). The method is with reference to reliability,
although can be generalized as per the above discussion on other quality
attributes whose estimation depends on the operational profile.
3.4.1 Software operational profile

Consider a software service, whose inputs are requests made to the service
through its API. Denote with prob(d) the probability that input d ∈ D is
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submitted to software for processing 7

Assume to have n non-overlapping partitions Cai et al. (2008),
S={S1, . . . , Sn}, with the corresponding domains: D={D1, . . . , Dn} and
Di ∩Dj = ∅ | i ̸= j. In this case, the operational profile is often defined in
two stages:

• A probability distribution is defined on the set of partitions S, which
defines the probability prob(dr ∈ Di) – denoted withPi - of selecting
at random an input dr from partition’s domain Di:

Piprob(dr ∈ Si) =
∑
d∈Si

prob(d) (i = 1, . . . , n). (3.30)

• The conditional probabilities p(d | d ∈ Di) of selecting input d from
within partition’s domain Di can be expressed as:

prob(d | d ∈ Di) =
prob(d)

Pi

(i = 1, . . . , n). (3.31)
Note that the probabilities (3.30) and (3.31) are defined over different
domains: the former over the set of partitions (we refer to it as operational

profile on partitions, OPP); the latter over the inputs of a partition
(operational profile within partitions). We explicitly point out that the
n probabilities Pi, summing up to 1 by their nature, have (n-1) degrees
of freedom, i.e., (n-1) partition probabilities can be defined so that∑n−1

i=1 Pi ≤ 1, and the last one is given by Pn = 1−
∑n−1

i=1 Pi.
7Selecting an input from the input space D and submitting it to the service corresponds to issue a request

to the service through its API; thus, “Input” and “request” are used as synonymous in the following.

46



3.4. ESTIAMTING THE OPERATIONAL PROFILE

3.4.2 Dealing with profile uncertainty

The probabilities (3.30) and (3.31) capture the aleatory uncertainty about
the likelihood of an input being selected at random from the input space.
In principle they are estimable with an arbitrary accuracy: it would suffice
to observe software in operation for unlimited period of time. If this were
possible, then these probabilities will be known with certainty.

Unlimited observations of software in operation cannot be afforded
since D is, in general, very large. While with limited observations one might
be able to estimate quite accurately the partition probabilities Pi, precisely
estimating the conditional probabilities prob(d | d ∈ Di) for every single
input is infeasible. The very idea of partitioningD and having a much smaller
number of partitions than that of inputs is motivated by the desire for a
coarser model for the OP.

Infeasibility of estimating prob(d | d ∈ Di) can be dealt with by
making additional assumptions. Finding plausible assumptions is difficult and
instead convenient assumptions are often made in practice, which may be
incorrect. One such assumption is that all inputs of a partition are equally

likely. Another one is that conditional probabilities prob(d | d ∈ Di) are not
affected by a change of the likelihoods of partitions. In this paper we adopt
the latter assumption, i.e. that the operational profile changes only affect
the probabilities of partitions.

Given a limited knowledge about the true OP (e.g., due to limited
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observations of software in operation), the estimates of probabilities
(1) and (2) are subject to epistemic uncertainty. We focus on epistemic
uncertainty of the probabilities of partitions (OPP), which are treated as
random variables with their corresponding distributions. We apply Bayesian
inference to update the epistemic uncertainty about OPP and discuss
practical implications.
3.4.3 Reliability modeling framework

We assume, in line with the literature Cai et al. (2008); Frankl et al. (1998);
Lv et al. (2014b), that reliability is expressed as the probability of not failing
on a randomly chosen input dr ∈ D. Let F be a random variable (r.v.) that
represents this probability. The service reliability then can be expressed via
the r.v. R = 1−F .

Let Fi be the r.v. representing the probability of service failure on an
input dr selected from partition’s domain Di. Assuming that the profile on
partitions does not affect the likelihood of the inputs within partitions, each
conditional probabilityFi is suitably represented as a r.v. with pdf fFi

(x). We
assume that Beta distribution with shape parameters ai, bi – Beta(ai; bi) is
appropriate for Fi, since it offers flexibility and simplifies Bayesian inference,
as is detailed below. The expected value of each Fi with Beta distribution is
Albert and Denis (2012):

E[Fi] = ai/(ai + bi). (3.32)
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Consider the case that OPP is known with certainty, i.e., the values
P1=P1, . . . ,Pn=Pn are known constants. In this case, the probability of failure
on an input dr selected from D according to that profile is a weighted sum of
the n conditional Fi, the weights being the known probabilities P1, . . . , Pn:

F =
n∑

i=1

Pi · Fi, E[F ] =
n∑

i=1

P i · E[Fi] (3.33)

Let us further assume that the n conditional Fi are independently

distributed random variables. This is a plausible assumption in those
cases when an assessor is not going to change the belief (i.e., epistemic
uncertainty) associated with Fi if (s)he sees evidence of poor/good
conditional probability of failure in some of the other partitions. We
observe that the product Pi · Fi in Equation (3.33) is itself a random
variable. Denoting with fPi

Fi
(x) its marginal distribution,8 the pdf of Fi can

be expressed as a convolution:
fF(x | P1 = P1, ...,Pn = Pn) = fP1

F1
(x)⊛ · · ·⊛ fPn

Fn
(x). (3.34)

We can now remove the assumption that the profile is known
with certainty (captured by P1 = P1,..., Pn = Pn). Since partition
probabilities are dependent, following Adams (1996) we model the
epistemic uncertainty about OPP using a multivariate distribution, namely
the Dirichlet distribution, D(α1, ..., αn), with parameters (α1, ..., αn) for n
variates with (n-1) degrees of freedom, defined by Albert and Denis (2012):

8This distribution can be trivially derived from fFi(x).
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fP1,...,Pn
(p1, ..., pn) =

Γ(A)∏n
i=1 Γ(αi)

(
n−1∏
i=1

pαi−1
i

)(
1−

n−1∑
i=1

pi

)αn−1

(3.35)

where A =
∑n

i=1 αi, and Γ() is the Gamma function.
The marginal distribution of each Pi variate is a Beta distribution with

shape parameters (αi, A-αi), Beta(αi, A-αi) [9]. The moments of the Pi

variates are given by Albert and Denis (2012):
E[Pi] =

αi

A
, (3.36)

V ar(Pi) =
αi · (A− αi)

A2 · (1 + A)
, Covar(Pi,Pj) =

−αi · αj

A2 · (1 + A)
, j ̸= i. (3.37)

Using the formula of the total probability, Equation (3.34) becomes:
fF(x) =

∫
f(x | P1, ...,Pn)fP1,...,Pn(p1, ..., pn)dp1 . . . dpn

=
∫ [

fP1
F1
(x) · ... · fPn

Fn
(x)
]
fP1,...,Pn(p1, ..., pn)dp1 . . . dpn.

(3.38)

Equation (3.38) provides the marginal distribution of the service

probability of failure, which accounts for the epistemic uncertainty related
to the profile and the n conditional probabilities of failure, Fi.

The marginal distribution of F given by Equation (3.38) can be used
to compute various metrics of interest for the service under study. One can
compute the expected value (and other moments) of the service probability
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of failure, hence the expected value of the service reliability R, which are
given by:

E[F ] =
n∑

i=1

E[Pi] · E[Fi], E[R] = 1− E[F ]. (3.39)
Moreover, one can compute the risk that the true probability of failure

can turn out to be unacceptably high (i.e. exceed a given threshold). This
risk is represented by the tail of the distribution of the service probability of
failure:

prob(F ≥ T ) =

∫ 1

T

fF(x)dx. (3.40)
Another question of interest is knowing the likelihood of surviving the

next M input requests without a failure. This can be obtained as:
prob(no failure in next M inputs) =

∫ 1

0
(1− x)M · fF(x) dx. (3.41)

The above expressions may be computed from F , which in turn
depends on the data observed in operation: i) the number of inputs
processed correctly and incorrectly in partitions – these will be used
to update the uncertainty about conditional probabilities of failure in
partitions, fFi

(x); ii) the number of inputs selected from each partition,
to update the uncertainty about the partition probabilities, captured by
D(α1, ..., αn).

Application scenarios

We envisage two important circumstances of interest:
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• The operational profile is fixed. In this case the epistemic uncertainty
about the OP will diminish as more and more observations come
from monitoring the service in use. The distributions of the
conditional probabilities of failure in partitions (Fi), too, will become
narrower and narrower as more observations are collected, and
asymptotically their whole mass will be concentrated in a single
point. This asymptotic case may require observations much longer
than one can afford prior to deployment. Thus, we foresee the
method to be useful in the initial period after deployment.

• The operational profile and/or the service itself is subject to change

(e.g., due to new functionalities, which may affect the way the
service is used). In this case, one can monitor the service behavior
for possible changes of the OP on partitions and of the Fi, and
re-compute the service reliability and other metrics of interest,
like those of Equations (3.40) and (3.41). The asymptotic case for
the stable profile outlined above may be simply unattainable due
to frequent changes in the case of a variable profile. Hence, one
may wish to discard “old” observations, if the current profile differs
significantly from the past. For such circumstances we define a
procedure to capture the relevance of the observations in judging
the operational profile, where recent observations are given a higher
weight than those reflecting the profile in the more distant past.
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Since the Microservice-DevOps context is more likely interested by this
second case, we herefater report only the variable-profile case. For details
about the stable profile, see our paper Pietrantuono et al. (2020a).
3.4.4 Estimation of variable profile

In case the OP changes over time, estimates of the service reliability, which
are accurate yet promptly reactive to changes, can be made using a range of
schemes, depending on how the history of observations in operation is taken
into account when updating the Dirichlet distribution. In the case of “small”
changes, accounting in the prior for the entire history might be acceptable
Adams (1996). In the case of significant and rapid profile changes, discarding
the possibly irrelevant history and re-starting with “ignorance” might be
preferable. Cases may also be envisaged, whereby accounting in the prior
only for the very recent history might be best. Within this range of schemes
– from keeping all past observations in the prior to discarding them all - we
propose an iterative method to chose the prior best suited for the pace of
change.

We propose to run several Bayesian models in parallel, and to select
for reliability predictions the model which provides the most accurate

prediction of the operational profile at the time a prediction is made. The
candidates are all Dirichlet models, using various history lengths. To this
aim, we divide the history of observations into iterations. A candidate
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model, Mh, will account for the history up to h previous iterations, with
h = 1,...,K, K being the maximum number of past iterations to consider.
With this approach, each candidate prior remains a Dirichlet distribution,
allowing for analytic inference (based on the conjugate property of Dirichlet
and the multinomial likelihood of the observations). Specifically:

• At iteration i, N1,i,...,Nn,i requests – with N1,i+...+Nn,i=Ni - are
observed for partitions S1, ..., Sn, respectively, and the profile is
updated.

• K Dirichlet distributions are computed, using the requests observed
in the last iteration, and considering the history up to the previous
h = K iterations. At iteration i (i ≥ K), we have K models:

Mh = fP1,...,Pn(p1, ..., pn) = D(α1,i−h +N1,i, . . . , αn,i−h +Nn,i) (3.42)
where h=1 to K. The parameters α1,i−h,...,αn,i−h account for the
cumulative number of observations per partition between iterations
(i-h) and i. These models consider histories of various lengths,
representing the observations more or less well depending on when
and to what extent the profile changed.

• These candidate models are then pair-wise compared by means of
posterior odds on the posterior Dirichlet distributions only. If we are
indifferent between the candidate prior beliefs in the OP, using the
Bayes Factor B is the same as using the posterior odds, which is equal
to the likelihood ratio. For instance, with two candidate models, M1
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and M2, for the prior of the operational profiles, the posterior odds
can be expressed as:

posterior odds = P (M1|data)
P (M2|data) =

P (data|M1)
P (data|M2)

· P (M1)
P (M2)

= B · [prior odds] (3.43)
where data represents the requests N1,i,...,Nn,i observed in the last
iteration. Given the same prior, prior(M1) = prior(M2), hence prior

odds= 1, model M1 is preferred if the Bayes factor is greater than
1, meaning that it describes better the observed data (i.e., how the
observed requests are split among partitions).

Comparing models allows addressing a well-known problem in
Bayesian inference, often left to intuition, namely how long the history
needs to be (i.e., how to choose K) for learning properly. Indeed, this can
bring to scalability problems, but the estimate’s accuracy vs computational
cost trade-off is decided by the user depending on the needs/resources.
The most expensive choice is to compare, at every iteration, all the models
and take the best one. While the least expensive choice is to compare
only two models and only at “relevant” iterations. A practical compromise
strategy is to compare the model considering only the observations in the
last iterations (i.e., without history) against a model with either a) all the
observations from the beginning (K = i), or b) the observations up to a
given number of past iterations (K < i) deemed to be relevant for the
problem under study, or c) up to known/hypothesised change points of the
process (for instance, if the tester has reasons to think that the operational
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profile has changed – e.g., a new functionality is released - or a change is
detected through other techniques).

This method has been shown to work well to follow the operational
profile change. Examples and case studies of this approach can be found in
our paper Pietrantuono et al. (2020a).

3.5 RELIABILITY TESTING

We have developed and applied some of the above sampling schemes for
testing RESTful web services and Microservices. We hereafter report the
application of an adaptive sampling algorithms for reliability-assessment
testing, and of a with-replacement sampling according to the state-based
operational profile for performance and reliability testing of microservices.

We first consider the problem of assessing quantitatively the reliability
of an MSA application in use. This is a great concern for companies migrating
towards MSA. While MSA is expected to favor seamless management of
microservices’ failures via fault tolerance means, what finally matters is the
reliability of the overall MSA actually observed during operation (operational

reliability). A microservice scarcely resilient in its operational context may
have small impact on the user perception if it is rarely stimulated. Conversely,
a robust yet highly invoked microservice may determine perceivable MSA
unreliability, as the likelihood to observe a failure increases with usage.
Decision makers – MSA stakeholders, as well as managers of development,
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testing and operation - need to be aware of how much reliable is the MSA in
the operating environment. This would drive strategic decisions, e.g. about
effort allocation to maintenance or re-engineering activities.

Traditional software reliability assessment techniques have limited
applicability to MSAs. Indeed, static attempts to gauge reliability are almost
useless, as the application and the usage profile change over time due to
frequent releases, services’ upgrades, dynamic service interactions, and to
how customers use the application – a scenario we have dealt with in the
previous Chapter.

The technique we present uses an adaptive sampling scheme for
reliability assessment of MSA in its operational context. It acts as a run-
time testing strategy, triggered upon request by a stakeholder who needs
an estimate of the MSA operational reliability. achieves unbiasedness,
accuracy and efficiency by three key activities:

1. Monitoring: Field data are gathered about the microservices’
usage profile and about failure/success of demands. This provides
updated estimates representing the real reliability at the time when
the assessment is requested.

2. Testing: Using only passive observations (monitoring) is inadequate
for estimates with high accuracy and confidence. Indeed, the
application could be not adequately stressed and failures would
need much time to be exposed, leading to overestimation of
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reliability or, conversely, to an excessive number of observations
for an acceptable confidence. We use a testing algorithm based
on adaptive statistical sampling, which exploits data gathered in
operation to drive the test generation and accelerate the exposure
of failures.

3. Estimation: The testing algorithm identifies the most relevant test
cases in few steps, by forcing a disproportional selection of test
cases with respect to the observed usage profile. In principle, such a
type of sampling would yield biased estimates. Therefore, a proper
weight-based estimator is adopted at the end of testing in order
to counter-balance the selection strategy, ultimately providing an
accurate and unbiased estimate with small variance.

3.5.1 Usage scenarios

Two use cases are foreseen:
In use case UC1, the tester requires an estimate of the current MSA

reliability using a constrained testing budget. Let us consider as upper bound
on the number of tests which can be performed in operation a value as high
as the number of test frames – a test frame is a jth equivalence class within
domain Di, Ci,j. In this situation, a without-replacement sampling scheme
is adopted, as in Pietrantuono et al. (2018).

In use case UC2, higher accuracy and/or stronger confidence in the
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reliability estimate are required. The tester wants to achieve them even at
the cost of a possibly high number of test cases. In this scenario, without-
replacement sampling is not applicable, and we use a with-replacement
sampling scheme.
3.5.2 The method

The steps of the testing method includes pre-release activities, to be
performed once before release, and in vivo activities, to perform the
reliability assessment in operation.

Pre-release activities

Demand space partitioning. The demand space D is partitioned in a
set of subdomains. To this aim, values of the arguments of each edge
microservice method are grouped in equivalence classes, Ci,j. We adopt
specification-based partitioning, where equivalence classes are defined
based on the input arguments in a method’s signature. Consider, for
instance, the method Login(String username, String password):
values of the username input can be grouped into five classes according to
the string length (in-range, out-of-range) and content (alphanumeric, ASCII,
or the empty string); for password, seven classes are defined, according
to the length and content (as for username), and to the satisfaction of
two application-specific requirements (one upper case letter, one special
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character). The cartesian product yields 35 combinations. Each of them is
referred to as a test frame (corresponding to a subdomain).

Initialization. Each test frame is associated with the probabilities pi and
fi of selection and of failure of a demand from Di, respectively. Their true
value is of course unknown; the estimates p̂i and f̂i of the true values are
used instead. In case the tester has no prior knowledge about expected
usage and failure proneness of microservices in operation, all p̂i and f̂i are
initialized by uniform distributions. It then refines the estimates dynamically
as more information becomes available from monitoring, using the simple
probabilities update formulas described later, or the previously-explained
Bayesian approach.

Graph construction. As required by the adatpvie sampling scheme
presented in the previous Chapter, an graph model is needed. In this case,
a graph of the test cases space is constructed, whose nodes represent test
frames, and an arc between two nodes represents a dependency between
the failure probabilities of the corresponding test frames.

For every pair (i, j) of test frames of a method of an edge microservice,
we define a distance d as the number of differing input classes. For instance,
the distance between Login(username1, password3) and Login(username2,

password3) is d = 1. The greater the distance, the bigger the chance for two
demands to execute different control flow paths within the method’s code.
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The weight wi,j associated with the arc (i, j) captures the belief about the
joint failure probability of test frames i and j. Indeed, as demands drawn
from two test frames of a method are likely to execute some common code,
the failure probability assigned to a test frame affects the belief about the
failure probability of another frame, depending on their distance. The weight
wi,j expresses the joint probability of failure: P (i ∩ j) = P (i|j) · P (j).
The conditional failure probability P (i|j) is the probability for test frame i

to fail, conditioned on the fact that a failure is observed for frame j. P (i|j)

is inversely proportional to the distance: the smaller the distance, the more
similar the two frames, and the bigger the conditional probability of failure.
We represent this relation by P (i|j) = P (i) · 1

d (d > 0, as at least one input
class differs between two test frames). Weights are computed as: wi,j =

f̂i · 1
d · f̂j.

Run-time monitoring and update

Monitoring. The in vivo activities require run-time data about the usage
and failure probability of test frames, to compute an estimate aligned with
the current reliability in operation. To this aim, a monitoring facility traces
the requests to each microservice’s method (name of the method and
input values, so as to map the demand to a test frame), and their outcome
(success/fail, so as to count the failed requests per test frame). Many
monitoring tools are available to gather such data, e.g. Amazon CloudWatch
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(Amazon) and Nagios (Nagios Enterprises). Note that a rough reliability
estimate could be computed directly by the gathered data, but the demand
space is not guaranteed to be explored adequately by normal workload.
The goal here is to provide faithful estimates by actively spotting (through
the generated tests) those demands more informative about the current
reliability.

Probabilities update. The unknown usage and failure probabilities pi and
fi are modeled as random variables, whose estimate is updated as more
evidences (monitoring data) become available. The length of the history
of observations to consider should to be defined so as to promptly react
to changes of the usage profile and failure probabilities. Instead of the
Bayesian approach described earlier, we adopt here a simpler criterion, i.e.,
a sliding window of length W on the history of the demands issued to edge
microservices. The update rule for p̂i and f̂i are:

p̂ui = p̂u−1
i · [H + (1−H) · (1− R

W
)] + ôpui · (1−H) · ( R

W
) (3.44)

f̂u
i = f̂u−1

i · [H + (1−H) · (1− R

W
)] + ôf

u

i · (1−H) · ( R
W

) (3.45)
where:

• p̂u−1
i is the previous occurrence probability of the i-th test frame;

• f̂u−1
i is the previous failure probability of the i-th test frame;
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• R: is the number of executed demands (less than W if the estimate
is requested within a window);

• ôpui : is the occurrence probability for test frame i at the current step,
estimated as the ratio between the number of failed demands to the
i-th test frame and R;

• ôf
u

i : is the failure probability for test frame i at the current step,
estimated as the ratio between the number of failed demands to the
i-th test frame and number of total demands to that test frame;

• H: is a value between 0 and 1, which weighs the history considered
in the update (set to 50% in the experiments).

These rules allow changes of the operational profile and of the failure
probability to be detected more promptly than it would be by considering
the whole history.

Test generation algorithm

The test cases generation and execution phase consists of an iterative
algorithm using the adaptive sampling scheme, hecne the above-defined
graph. Assuming n test cases to spend, the algorithm generates and
executes one test case per step. The first test frame is selected by simple
random sampling, namely all test frames have equal probability of being
selected initially. In an iteration, a test case is generated and executed
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for the selected test frame by drawing a demand for it (i.e., taking values
from the corresponding inputs classes), according to a uniform distribution.
Then, one of two sampling schemes is used to select the next test frame:
weight-based sampling (WBS) and simple random sampling (SRS)9. The
former is chosen with probability r and follows the arcs between graph
nodes (i.e., failure dependency between test frames), so as to explore
possible clusters of failing demands; this feature is useful when failure
points are clustered, as it often happens in software testing. This depth
exploration is balanced by SRS, chosen with probability 1 − r, for a breadth
exploration of the test frame space, useful to escape from unproductive
cluster searches. The steps are repeated until the testing budget n is over.

The test generation algorithm varies depending on the usage scenario.
In use case UC1, without-replacement WBS and SRS schemes are used, in
which a test frame can be selected only once. Clearly, this implies that the
number of tests must not exceed the number of test frames. This variant is
useful when just “few” tests can be executed in operation; it is a mere best

effort approach within an upper bounded sample size (i.e., number of tests).
In this scenario, a test frame is selected at step k by a distribution according
to equation:

qk,i = r ·
∑

j∈sk wi,j∑
h/∈sk,j∈sk wh,j

+ (1− r) · 1

m− nsk

, (3.46)
with:

9If there is no arc outgoing from the current set of selected test frames (thus, no failure dependency
between the current sample and any other test frame), the SRS scheme is used.
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• qk,i: probability to select test frame i at step k;
• m: total number of test frames;
• sk: current sample, namely the set of all test frames selected up to

step k;
• nsk : size of the current sample sk;
• wi,j: weight of arc from node (test frame) j in the current sample sk

to node (test frame) i;
• wh,j: weight of arc from node j in the current sample sk to node h

not in sk;
• r: probability of using WBS (hence, probability of using SRS: 1− r).

In the scenario UC2 (with an unconstrained number of tests), with-
replacement sampling is adopted, where a test frame can be selected more
times. In this case Eq. 3.46 becomes:

qk,i = r ·
∑

j∈sk wi,j∑
h=1,...m,j∈sk wh,j

+ (1− r) · 1

m
. (3.47)

The first addendum in Eq. 3.46 and Eq. 3.47 accounts for the
contribution proportional to the weights of the graph (WBS in Fig. 4.2),
which capture the failure dependency between test frames. The second
addendum in Eq. 3.46 and Eq. 3.47 accounts, respectively, for the selection
probability of not-yet-selected test frames in SRS without replacement, and
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the selection probability in SRS with replacement. The algorithm is adaptive
as the q values change depending on which test frame is in the current
sample.

Estimation

The testing algorithm is fed with information from monitoring, namely p̂i and
f̂i of each test frame. Testing is expected to improve f̂i by spotting more
failing test frames, yet it cannot tell anything about the usage probability p̂i.
Therefore, the p̂i values remain unchanged during testing, and are used only
at the end to compute the estimate. The f̂i values are updated at each step
considering the 0/1 (success/failure) outcome of tests.

We denote by yi,t the observed outcome of a test case t taken from
test frame i, yi,t=0/1.

In scenario UC2, the estimate of f̂i is the updated ratio of the number
of failing over executed demands with inputs taken from test frame i: f̂ ′

i =
f̂i·ni+

∑mi
t=0 yi,t

ni+mi
, where ni is the number of demands with an input from test

frame i observed during operation and mi is the number of demands taken
from test frame i during testing (i.e., test cases).

In scenario UC1, where mi ≤ 1, f̂i is unchanged if mi = 0; if mi = 1, it
is given by: f̂ ′

i = f̂i·ni+yi,t
ni+1 .

The monitoring data and the results of testing are used to compute the
estimate of the failure probability Φ =

∑
i pi · fi. The estimate is updated
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at step k accounting for the change of the selection probability for each test
frame (qk,i) and of the failure probability f̂ ′

i . The estimator properly accounts
for the disproportional selection (with respect to the operational profile)
made through Eq. 3.46 so as to preserve unbiasedness, by using weights
equal to 1/qk,i (values selected with high probability will contribute less to
the estimation, and vice-versa), as detailed hereafter.

In scenario UC1, the estimator at step k = 1 (the first observation taken
by the SRS) is: z1 = N · p̂i · f̂

′

1,i, where N is the total number of test frames,
p̂i is the probability of selecting the i-th test frame (that does not depend on
the step) and f̂

′

1,i is the failure probability of the selected test frame i at step
1. At step k > 1 the estimator is the one by Hansen-Hurwitz Hansen and
Hurwitz (1943):

zk =
1

n

n∑
k=1

p̂i · f̂
′

k,i

qk,i
, (3.48)

where n is the number of executed tests.
In scenario UC2, the initial estimator z1 is the same as before, while at

step k > 1 it becomes:
zk =

∑
h∈sk

p̂i · f̂
′

h,i +
p̂i · f̂

′

k,i

qk,i
. (3.49)

In both use cases, the final estimator is the average of the values
obtained at each step:

Φ̂ =
1

n
(N · p̂i · f̂

′

1,i +
n∑

k=2

zk) (3.50)
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representing the expected probability to experience a failure on a random
demand to the MSA.

The overall MSA reliability is then computed as:
R = 1− Φ̂. (3.51)

3.6 PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VIA
OP-BASED SAMPLING

This work has been presented in a software testing conference Camilli et al.
(2022a). We hereafter report the peculiar aspects.

The focus is on performance and reliability, and on their inter-
relationship, considered in a DevOps context where continuous testing

and monitoring represent two key practices. To assess if a release meets
a desired quality, tests are performed in production, or in a staging
environment with realistic users’ behaviour and workload intensity . The
setpes are depicted in Figure 3.1.

The main steps of the strategy are as follows:
1. definition of the operating conditions (based on the usage data

collected from Ops), composed of workload intensity and behaviour
of the actors using the system;

2. execution of ex-vivo testing sessions, loading the system under test
(SUT) with the specified workloads;
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Figure 2: The three stages of MIPaRT.

The methodology follows three stages shown in Fig. 2:
i) de!nition of the operating conditions (based on the usage

data collected from Ops), composed of workload intensity
and behaviour of the actors (Sec. 4.2);

ii) execution of ex-vivo testing sessions, loading the SUT with
the speci!ed workloads (Sec. 4.3);

iii) integrated analysis, fed by raw measurements, to compute
and visualize performance and reliability estimates (Sec. 4.4).

4.2 De!nition of the operating conditions
The !rst stage consists in de!ning the operating conditions to be
reproduced for testing the system. Such a de!nition extends the
one introduced in [9] and it includes the following elements:

• the workload speci!cation that describes allowed requests
that a user can invoke on the SUT together with details on the
way to generate the requests to each operation (i.e., relative
paths, parameters, and constraints, as shown in Table 1);

• a set of behavioural models, each providing a stochastic rep-
resentation of user sessions in terms of (valid and invalid)
requests generated according to the workload speci!cation;

• a workload intensity value: the expected number of concur-
rent users, likely to access the system in operation.
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Figure 3: DTMC behavioural model for the buyer actor.

• a behaviour mix, namely a distribution of frequencies of be-
havioural models, representing their occurrence probability
within the de!ned workload intensity.

A user interacts with the system according to a given behavioural
model. The model is generated by combining the information ex-
tracted from the documentation (i.e., the workload speci!cation)
and the frequency of requests issued by di"erent actors extracted
from the usage data. For example, a possible actor for Train Ticket
is the guest who searches for tickets without logging in, while the
buyer is a logged-in actor who searches and then reserves a ticket.
The buyer may perform the following sequence of requests: visit
the home, login, search ticket, book a ticket, and then pay.

In MIPaRT, we propose a behavioural model that provides a
probabilistic representation of user sessions in terms of a Discrete
Time Markov Chain (DTMC) [40, 41]. Here, we extend the modeling
approach introduced in [42] by additionally considering the input
space in the construction of the Markov chain. Thus, the DTMC is
the main building block of our integrated approach. It is the model
that drives the testing activity and then the integrated reliability
and performance assessment. Essentially, the nodes of the DTMC
model represent the requests that can be issued to the system by
providing either a valid or invalid input values, according to the API
speci!cation. Thus, the input space for each request is partitioned
into valid and invalid classes, henceforth referred to as request
classes. The transitions (i.e., weighted edges) in the DTMC specify
the probability of moving from a given request class to the next one.
Figure 3 shows an example of DTMC for the buyer actor. Green
nodes model valid requests, whereas red nodes model invalid ones.
For instance, from the valid request login, a buyer can move to
the valid request searchticket with probability 0.9 and to the
invalid request searchticket with probability 0.1. Based on the
API relative path associated with each DTMC node, we can also
determine the core microservice in charge of handling the requests
(second column in Table 1). For instance, in Fig. 3, the request
search_ticket maps to travelService. The DTMCs are used to
drive the generation of instances of synthetic users (i.e., actors) for
the testing sessions. The behaviour mix de!nes the percentage of

��

Figure 3.1. The steps of the proposed technique. From Camilli et al. (2022a)
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3. integrated analysis, fed by raw measurements, to compute and
visualize performance and reliability estimates.

3.6.1 Definition of the operating conditions

The first stage consists in defining the operating conditions to be reproduced
for testing the system. It includes the following elements:

• the workload specification that describes allowed requests that
a user can invoke on the SUT, together with details on the way
to generate the requests to each operation (i.e., relative paths,
parameters, and constraints);

• a set of behavioural models, each providing a stochastic representation
of user sessions in terms of (valid and invalid) requests generated
according to the workload specification;

• a workload intensity value: the expected number of concur- rent
users, likely to access the system in operation;

• a behaviour mix, namely a distribution of frequencies of behavioural
models, representing their occurrence probability within the defined
workload intensity.

A user interacts with the system according to a behavioural model.
The model is generated by combining the information extracted from the
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documentation (i.e., the workload specification) and the frequency of
requests issued by different actors extracted from usage data.

The technique developed foresees a behavioural model that provides
a probabilistic representation of user sessions in terms of a Discrete Time
Markov Chain (DTMC) Camilli et al. (2022b); Norris (1997), where the nodes
represent the requests that can be issued to the system by providing either
a valid or invalid input values, according to the API specification. Thus, the
input space for each request is partitioned into valid and invalid classes,
henceforth referred to as request classes. The transitions in the DTMC
specify the probability of moving from a given request class to the next one.

The DTMCs are used to drive the generation of instances of synthetic
users (i.e., actors) for the testing sessions. The behaviour mix defines the
percentage of concurrent users to be sampled for each actor. For instance,
assuming to have three different actors in a ticket reservation system, for a
workload intensity of N concurrent users, the following behaviour mix:

(guest: 0.5; buyer: 0.3; refund claimer: 0.2) (3.52)
is used to emulate a scenario where 50% of the N users are guests, 30% of
them carry out a reservation, and 20% request refunding.

The operating conditions (behavioural models, behaviour mix, and
workload intensity) are extracted automatically from usage data collected
during the Ops stages of a DevOps cycle and raw sessions are automatically
recorded in session logs and then analyzed to extract the workload intensity
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and DTMCs using clustering algorithms Bertolino et al. (2020a); Vögele
et al. (2018). In this case, a cluster represents an actor and is a set of
sessions represented by similar DTMCs. Thus, to automatically generate
the operating conditions, we first need the following data in a session
log: “session identifier”, “request start time”, “request end time”, “request
relative path”and combinations of “valid” and “invalid values” for the
arguments of each request. Once the DTMCs are generated, the frequency
associated with DTMC is computed as frequencies of sessions in clusters
over all sessions. Thus, the frequencies defines the empirical categorical
distribution for workload intensity.
3.6.2 Ex-vivo testing

In this stage, joint performance/reliability tests are performed ex-vivo in
the operational environment. The SUT is deployed at the beginning of each
test session (and un-deployed at the end), then loaded with synthetically
generated users that replicate the operating conditions of interest. The
sessions are generated and then orchestrated according to the following
factors defined by the tester:

• the DTMC behavioural models of the users;
• the behaviour mix categorical distribution;
• a set Λ of workload intensity values;
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• a set of deployment configurations C (e.g., memory, CPU, and replicas
per each microservice).

For each pair ⟨λ, c⟩ ∈ Λ× C, the SUT is deployed by using the configuration
c. Thus, the testing session starts and generates the workload intensity λ.
Each actor instance is drawn with a probability of the actor’s behaviour
mix. Given an actor instance, the testing process automatically samples
requests as well as inputs according to the corresponding DTMC. Namely,
each input is generated by drawing from one of the two classes according to
the current node and outgoing transition probability. For instance, a buyer

instance from the state login, can either perform a search with a valid
input (with probability 0.9) or an invalid one (probability 0.1). An invalid
search request can be issued, for example, by inserting special symbols
in the argument startingPlace, or by using a wrong date-time format
for the departureTime argument. Between each request the process
applies a pseudo-random think time using an exponential distribution (with
average inter-arrival time between 1 and 5 seconds) to represent realistic
user behaviour.

During all the testing sessions, we collect raw measurement data,
that are then used in the integrated performance and reliability analysis and
visualization as described in the following.
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3.6.3 Performance-reliability analysis

Metrics

The analysis starts by estimating performance and reliability during the
observation period T (i.e., duration of a test session) for each request class
p (e.g., loginvalid).

For each class p, we define the Performance estimator, P̂ (p), as the
normalized distance from the average response time µ(p) to a performance
threshold L(p):

P̂ (p) =


L(p)−µ(p)

L(p) µ(p) < L(p)

0 otherwise
(3.53)

The lower the value, the worse is performance. It is worth noting that the
parametric threshold L(p) in Eq. 3.53 can be set for any class p. There are
essentially two ways known in literature to set this threshold: according to
a user-based experience Nielsen (1994) or a scalability requirement Avritzer
et al. (2018). The former approach follows usability engineering practices
for web-based applications. In this case, L(p) can be set to 1 sec if we want
to represent the limit for the user’s flow of thought to stay uninterrupted,
or 10 sec for keeping the user’s attention focused. According to the
latter approach and existing literature Avritzer et al. (2020); Camilli and
Russo (2022), L(p) can be empirically derived as a scalability threshold:
L(p) = µ0(p) + 3 · σ0(p), with µ0(p) and σ0(p) average and standard
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deviation of the response time for the request class p, measured during
a testing session carried out under ideal operating conditions, like a small
number of users and full availability of system resources. We further define
Performance Degradation (PD) as 1− P̂ (p), so that the higher its value, the
worse is the performance.

We then define the Reliability estimator, R̂(p), as the ratio of
non-failing requests in T , according to the NelsonÄı̀Aalen non-parametric
estimator Nelson (2000); Pietrantuono et al. (2020b):

R̂(p) = 1− F (p)

N(p)
(3.54)

with N(p) total number of issued requests in p, and F (p) number of failed
requests in p, so that the lower the value, the worse is reliability. Then we
define the ratio of Failed Requests (FR) as 1 − R̂(p), so that higher values
correspond to worse reliability. In our work, detect a failure or success of a
request on the HTTP status code. Specifically, every status code other than
2xx (success) is considered as a failed request.

To investigate issues associated with performance and reliability at
finer level, the solution provides engineers with additional metrics for each
request class p:

• Request Ratio (RR): ratio of requests in class p over of all the requests
of the test session.

• Connection Errors ratio (CE): requests that return a connection error
75



3.6. PERFORMANCE AND RELIABILITY ASSESSMENT TESTING VIA OP-BASED
SAMPLING

out of all the failed requests in p over of all the requests of the test
session.

• Server Errors ratio (SE): requests that return a server error out of all
the failed requests in p over of all the requests of the test session.

Visualization facilities are also provided for a more comprehensive reporting.
The solution is fully automated and requires the following inputs:

the RESTful API specification, the target operating conditions, and the
performance threshold for each class of requests. Raw measurements
are collected during each test session to compute the performance and
reliability estimators as well as the additional indices per each individual
class. At the end of the sessions, the tester visualizes metrics as well as plots
in a interactive notebook implemented using Apache Zeppelin.

Further details about the proposal and expeirmentation are in the
paper Camilli et al. (2022a).
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4 SYSTEM TESTING FOR FUNCTIONAL AND
ROBUSTNESS

This chapter reports our proposal for supporting the system testing phase,
with the aim of checking the functional correctness and robustness of the
MSA under test. Since we do not use information from the expected usage
(i.e., the operational profile), the results of such a testing are oriented toward
the development team (rather than for assessing quality-in-use attributes
such as operational reliability and performance). The technique is therefore
meant for he system testing phase rather than for acceptance testing.

It also integrates an approach for tests prioritization, which will be used
to support security testing.

The solution being developed and its preliminary results on a case
study are presented in two papers we have published in the context of the
project Giamattei et al. (2022a)Giamattei et al. (2022b).
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4.1 THE SPECIFICATION-BASED TESTING METHOD

The proposed solution is a black-box testing technique based on API
scpeficiation of an MSA. This is preferable as MSA code is polyglot
and distributed across various repositories. Automatic techniques for
specification-based black-box testing of RESTful web-services can be also
applied for MSA testing, as they can generate test cases from documentation
of their microservices interface Arcuri (2019); Atlidakis et al. (2019); Corradini
et al. (2021).1 This practice is adopted in black-box testing of service-oriented
architectures for fault detection Karlsson et al. (2020); Martin-Lopez et al.
(2020), as well as to test against requirements while achieving some degree
of coverage Corradini et al. (2021); Martin-Lopez et al. (2019).

However, the characteristics of real-scale MSA can make black-box
testing fall short. When many microservices are involved, with complex
inter-dependencies, a black box view gives no information about the internal
behaviour (both in terms of achieved internal-microservices coverage and
of their failing behaviour). Black-box testing exercises functionalities from
an external perspective, with requests directed to edge microservices. The
output of an edge microservice is usually dependent on the interaction with
other internal microservices, which can be edge for other functionalities,
or inaccessible from the outside. The absence of an internal perspective

1The most notable open format for specifying web services and MSA Application Programming Interfaces
(API) is OpenAPI/Swagger Ma et al. (2018) (https://www.openapis.org).
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4.1. THE SPECIFICATION-BASED TESTING METHOD

does not allow a tester to distinguish if a failure observed on a request
to a microservice is due to the microservice being faulty or to another,
interacting, microservice that propagated its failure to the one under test.
Also, internal microservices can be invoked by different edge microservices;
if one of them is faulty, several different failures can be observed at edge
level, in possibly different microservices. Testing without an internal
perspective considers these as independent failures.

The solution proposed is a grey-box specification-based strategy for
automatic tests generation and interactions monitoring. The strategy
is supported by a tool, called MacroHive, deployed as a collection
of microservices according to a service mesh pattern. This provides
observability of internal interactions, which is crucial for microservice
testing Ghani et al. (2019). The tool is applied to the TrainTicket benchmark
Zhou et al. (2018), and turns out to perform comparably to black-box
state-of-the-art techniques in edge-level coverage; it however: i) exposes a
number of internal failures undetected by black-box testing (distinguishing
propagated from masked failures), thus easing the identification of faulty
microservices and of failure propagation chains; ii) gives details about
internal dependencies, errors, and exceptions – of great importance to
practitioners Waseem et al. (2021); iii) and requires a lower number of tests.
Moreover, being itself a (set of) microservices deployed with the MSA, it
does not need to run separate testing sessions for each microservice to test.
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4.2 OVERVIEW

The grey-box strategy for testing an MSA, aims to expose and characterize
failures2 and to provide internal coverage information. It focuses on
observability, which is important when debugging a distributed system such
as an MSA Indrasiri and Siriwardena (2018). MSA are usually characterized
by:

• edge microservices, exposing APIs to external users to access the
functionality offered by the systems;

• internal microservices, exposing APIs to other microservices to
implement complex business functions.

A microservice can be edge for some functions and internal for others.
Black-box testing may not be able to allow testers to evaluate the test suite’s
ability to cover internal interactions. Moreover, they cannot spot when
a microservice fails due its own fault or due to the failure of an internal
microservice.

MacroHive generates tests starting from the microservices’ API, and
for every executed test observes the chain of requests among internal
microservices. It supports the proposed grey-box testing strategy via

2In the MSA literature, a failure is considered as a request yielding a 5xx HTTP response code, indicating
an error condition, an unhandled exception, or in general the inability to serve the request Arcuri (2019);
Laranjeiro et al. (2021); Martin-Lopez et al. (2020).
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automated test suite generation, then execution and monitoring thanks to
an infrastructure - designed according to the service mesh pattern Li et al.
(2019) - deployed with the MSA under test.

At the end of a session, the following results concerning edge and
internal microservices are provided to the tester:

• the set of executed tests with the corresponding outcome;
• the path of requests of each test through the internal microservices;
• a set of metrics at both edge and internal microservices levels (e.g.,

number of failures, average response time);
• a set of metrics for each level of dependency, namely the depth of a

microservice in the requests chain.
With this information, the tester can discriminate different

kinds of failures involving internal microservices, such as masked

failures (corresponding to correct responses from edge microservices,
despite failures of internal microservices), and propagated failures

(incorrect responses of the edge microservices due to failures of internal
microservices).
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4.3 MACROHIVE

MacroHive is conceived to automatically expose both edge and internal
failures, so that a tester does not need to manually inspect request paths.
This functionality allows catching internal failures, undetectable by black-box
strategies. It also allows identifying the true cause of edge-level failures,
namely if due to the edge itself or to internal microservices. Since the
testing process targets microservices of the same MSA, it is possible to
detect common cause failures (e.g., a single faulty microservice that causes
failures of other microservices).

Figure 4.1 shows the MacroHive infrastructure. It has three main
components: uTest, uSauron and uProxy (uP). The first is responsible for
test cases generation and execution. The other components form a support
inter-service communication infrastructure Li et al. (2019) to be deployed
with the SUT. An MSA is composed of many microservices with independent
deployments, often controlled by multi-container management tools such
as Docker Compose Gouigoux and Tamzalit (2017); Jaramillo et al. (2016).
MacroHive automatically manipulates a docker-compose YAML file to add a
sidecar proxy to each microservice to test/monitor.
uTest

This service generates and executes a test suite. It adopts a pairwise
generation strategy that could help testers to detect multi-factor faults,
which are a high percentage in software systems Hu et al. (2020). Compared
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Figure 4.1. The MacroHive infrastructure

to other state of the art techniques, we expect a combinatorial design to
substantially reduce testing cost, while providing good coverage and fault
detection ability Cohen et al. (1996). uTest automatically retrieves the
specification (in the OpenAPI/Swagger format) of the edge microservices of
the MSA under test. The API are parsed to extract an Input Space Model
consisting of HTTP methods, URIs and body templates, HTTP status codes
and parameters’ details (type, bounds, default value, etc.); equivalence
classes Bertolino et al. (2020b) are defined for each parameter and then
categorized into valid and invalid.3

3A class is valid if it contains only input parameter values which do comply to the microservice specification,
and invalid if it contains only values that do not.
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Table 4.1 shows an example of input space partitioning for a request
with three parameters. By selecting two equivalence classes per parameter,
test case specifications are produced with a pairwise combinatorial strategy:
a 2-way test suite is generated, covering all pairs of parameter classes. Table
4.2 shows a sample test case specification: a test case generated from this
specification shall have for p1 a value chosen from class c1,2 (the example

value); for p2 a value from class c2,2 (negative value in range), and for p3 the
value true or false.

We call valid test cases those containing parameter values all
belonging to valid input classes; invalid test cases those containing at least
a parameter value belonging to an invalid class. To generate a nominal test
suite (composed of only valid test cases), only valid classes per parameter are
selected (when available, examples valid and default values are preferred),
otherwise valid and invalid classes per parameter are chosen to generate a
mixed test suite (e.g., for robustness testing).

The generated tests are executed by sending HTTP requests.
MacroHive allows generating requests also in case of authentication, by
specifying credentials or tokens in the configuration file. The test outcome
is automatically determined by evaluating the received HTTP status code.
uSauron and uProxy

These two components constitute a service mesh infrastructure to trace
service dependencies and log request-response couples during a testing
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session. Although many monitoring tools are available in the literature (e.g.,
Prometheus4, Jaeger5, etc.), we preferred to build our infrastructure in favor
of automation and flexibility with minimum instrumentation.

uProxy (uP) is deployed alongside each microservice to test/monitor,
complying with the sidecar pattern Burns and Oppenheimer (2016); Jamshidi
et al. (2018). Each proxy performs two tasks:

• acting as a reverse proxy for the coupled microservice;
• sending to uSauron an information packet whenever it collects a

request-response couple.
Different threads run these tasks to minimize communication delay. The
information packet is composed of: request/response URL, request/response
body, HTTP response code, response time, sender/receiver address.

uSauron is a microservice responsible for the collection of information
provided by proxies. In particular, it aims to log proxies packets and compute
fine-grained metrics (e.g., coverage, dependencies) for each test. For this
purpose, uSauron runs a distributed algorithm during a testing session to
link collected information to executed tests.
Test execution algorithm

The tests execution algorithm run by MacroHive (Figure 4.2) is realized by
4https://prometheus.io/
5https://www.jaegertracing.io/
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Figure 4.2. Example test execution sequence

uTest (the test executor), uSauron (the collector), and uProxies (the probes).
The example in Figure 4.2 shows a test involving microservices uS4 (edge)
and uS2, uS3 (internal); it entails the following messages: a start recording

message (number 1) is sent by uTest to uSauron; it notifies the intent to run
test t and that every subsequent message received by uSauron needs to be
linked to t. Then, uTest actually starts the test t, sending an HTTP request
to the uP proxy coupled with the edge microservice (message number 2).
The involved proxies intercept the request-response couples with the edge
microservice (2,7) and the internal interactions (3,6 and 4,5). For every
intercepted request/response, the proxies send information packets to
uSauron (messages 7.1, 6.1, and 5.1), which links them to test t. When uTest
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receives the response for t (message number 7), it sends a stop record

message to uSauron (message number 8). On receipt, uSauron stops the
packets recording and saves the collected records.

This algorithm is executed for every test in a testing session. The way
it is designed, the monitoring infrastructure can capture any concurrent calls
of internal microservices made within the same test execution. At the end
of a session, uSauron outputs a set of statistics.

Details about the implementation and experimentation are in the
papers we published Giamattei et al. (2022a)Giamattei et al. (2022b).
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Table 4.1. Example of input space partitioning

Parameter Type Input Classes Category

4*
p1

(required,
in path)

4*string c1,1: in range valid

c1,2: specified example value(s) valid

c1,3: empty string invalid

c1,4: no string invalid

4*
p2

(required,
in body)

4*integer c2,1: positive value in range valid

c2,2: negative value in range valid

c2,3: alphanumeric string invalid

c2,4: no value invalid

4*
p3

(optional,
in body)

4*boolean c3,1: {true,false} valid

c3,2: no value valid

c3,3: empty string invalid

c3,4: alphanumeric string invalid
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4.3. MACROHIVE

Table 4.2. A sample test case specification
URI template http://exampleHost:8080/examplePath/{c1,2}
HTTP method POST
body template {Äúp2Äù:{c2,2},Äúp3Äù:{c3,1}}

HTTP status code 201, 400
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5 CONCLUSION

This document presented the work done for the definition of testing
strategies aimed at quality assessment and improvement. Specifically, we
have first described the main challenges for testing particularly relevant
in the context of Microservice-DevOps systems. Then, we reported about
the algorithms we are using to support both the acceptance testing stage,
wherein an assessment of quality is required (e.g., for checking quality
gates), and for the specification-based system testing stage to check for
functional correctness and robustness.

The implementation of the above-mentioned techniques is expected
in Deliverable D3.2. Within the project, we are also working on the
integration with Artificial Intelligence (AI): how AI can support testing and
quality assurance in general, and how we should test systems (possible
microservices architectures) containing AI/ML components, viewed in the
context of a DevOps development and deployment. Also, further quality
attributes, such as energy consumption, are under investigation.
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