
Deliverable D3.2.

In vivo Testing Service for

Microservice Quality Assessment

Accompanying document.

June 2023

1 Scope

This is the accompanying document of Deliverable D3.2 of the µDevOps
project entitled, “In vivo Testing Service for Microservice Quality Assessment”.
The type of the deliverable is marked as Other, and is made up of software
artifacts, along with this accompanying document. The delivered artifacts are
made available on the project website www.udevops.eu, as well as on the fol-
lowing GitHub repositories:

https://github.com/uDEVOPS2020/MacroHive

https://github.com/uDEVOPS2020/EMART

https://github.com/uDEVOPS2020/ReliabilityAssessment

and at the linked Zenodo repository:
https://doi.org/10.5281/zenodo.8143905, indexed by OpenAIRE

2 Introduction

This document describes the artifacts implemented for the testing service
under development for the Microservice quality assessment. It integrates the de-
veloped testing algorithms based on sampling and on machine learning. Specifi-
cally, the artifact implements a prototype testing service embedding the testing
algorithms designed and described in Deliverable D3.1: Sampling-based Testing
Techniques Design and Algorithms for QoS Testing and embedding teh solutions
developed and described in the WP2 Deliverables D2.1 and D2.2.

Instructions are provided for using the algorithms of the testing service and
reproduce the examples developed for illustrative purpose. The artifact will be

1



extended during the project, as the Consortium will advance with WP4 and
WP5.

3 Automated Functional Testing

This artifact is the prototype implemented for automatic tests generation
for Microservice applications. It featues tests generation and monitoring via
a trace-based technique. It is described in Section 4 of Deliverable 3.1. The
artefact along with instructions for its usage are available at:
https://github.com/uDEVOPS2020/MacroHive

Hereafter, we report the main content and steps: The repository is divided
into four folders: uProxy, uSauron, uKnows and uTest are the 4 main compo-
nents of MacroHive.

uTest is the test generator, it can be deployed in docker with the ”buildand-
start” script. It exposes by default port ”11111”. It is possible to edit the default
configuration with the docker-compose file. All commands are HTTP requests
to this microservice. Requests are collected in scripts (ClientCommands folder)
to perform functionalities. In particular:

• init xx.sh: sends all selected files for the testing session to the microservice
environment;

• retrieveSpec xx.sh: automatically retrieve microservice’s specification, through
information defined in a json file (e.g., ports ftgo.json). Represent an al-
ternative to the previous instruction, where specification files are needed;

• execute.sh: start the testing session;

• clear.sh: clear the microservice’s environment (e.g., to perform a new
testing session);

• getOutput.sh: retrieve all output information after a testing session, and
put the files in output folder. Must be called before clear.

Initialization files (in initFiles) must be configured before script calls.
uSauron collect the traces from proxies. It can be deployed in docker with

the ”buildandstart” script. It exposes by default port ”11112”. It is possi-
ble to edit the default configuration with the docker-compose file. Scripts in
”ClientCommands” folder can be executed in order to perform functionalities,
in particular:

• proxycompose.sh: automatically upload a docker-compose file in input and
gives in output the same file manipulated to add proxies (experimental);

• clear.sh: clear the microservice’s environment;

• getX.sh: retrieve computed metrics, in output folder.

2



uProxy contains the implementation of the reverse proxy to be deployed
along every microservice.

uKnows performs the failure propagation analysis. It can be deployed in
docker with the ”buildandstart” script. It exposes by default port ”11113”. It
is possible to edit the default configuration with the docker-compose file. Scripts
in ”ClientCommands” folder can be executed in order to perform functionalities,
in particular:

• setup.sh: retrieve data from uSauron;

• compute.sh: compute activities for test reporting;

• getOutput.sh: retrieve the output;

• clear.sh: clear the microservice’s environment.

4 Reliability and Performance Testing

This artifact is the prototype of the automatic reliability and performance
tests generation for Microsrevice applications. The goal of testing in this case is
to estimate the expected reliability or performance of the microservice applica-
tion. This prototype exploits sampling-based algorithms described in Section 3
of Deliverable 3.1 and implements the estimator described in Section 3.5. The
full support for performance assessment is under completion. The artefact along
with instructions for its usage are available at:
https://github.com/uDEVOPS2020/EMART

These two tests generators will be integrated with algorithms for tests pri-
oritization and failure propagation analysis analysis developed in WP2.

Hereafter, we report the main content and steps: all the results obtained in
the experimentation of the proposed technique (called EMART) are collected
and reported in the repository. Each folder in the repository is coupled with the
corresponding Research Question (RQ) as described in the original paper. In
the RQ1 and RQ2 folders, results in terms of MSE and Variance are organized
considering:

• the true operational profile: profile1, profile2, profile3 and variable profile;

• the error attached to relative estimated profiles: 10%, 90%.

In the pictures of the repository, both EMART results and Operational
Testing (OT) results, used as baseline, are reported. The RQ3 contains all
the results of the cost-benefit analysis considering both MSE and Variance. All
considerations on the additional results with respect to those reported in the
paper confirm the main conclusions described in the paper.

In the folder ”code”, the source code of the EMART engine is available. To
run EMART, these steps need to be followed:

1. Import the source code in an IDE (e.g., Eclipse);

3



2. Populate the data structure Test Frame;

3. Define a Weight Matrix to build connections among Test Frames;

4. Set the values of n (number of samples to be selected), and d (a weight
parameter representing the probability of adopting the weight-based sam-
pling in the adaptive sampling algorithm, 0.5 is the default).

To repeat the experiments, it is necessary to:

1. Download and run the application defined in the paper as ”experimental
subjects”;

2. Generate requests according to a desired profile (defined in the test frame
data structure) to the interface of the components;

3. Run a monitoring infrastructure
(like Metro Funnel https://github.com/dessertlab/MetroFunnel.git) to col-
lect the methods invocation and update the information in input to the
EMART engine.

5 Reliability assessment from data

This artifact reports Bayesian algorithms that we made available to provide a
reliability assessment functionality from data. Such data could be collected from
testing (e.g., from the two tests generator above) or from online observations.
Data regard the observed failures per “partition”, where a partition is, in the
case of an MSA, a microservice or an equivalence class in the microservice’ API
input space. This is described in Section 3.4 of Deliverable 3.1

The artefact along with instructions for its usage are available at:
https://github.com/uDEVOPS2020/ReliabilityAssessment

Hereafter, we report the main content and steps:

• The Matlab code under the BayesianReliabilityAssessment folder.

• The file ReliabilityAssessment.m for the assessment of reliability in one
iteration. It takes as input:

– demands: an (1 x m) matrix of demands (with m being the number
of partitions);

– failures: an (1 x m) matrix of failing demands (with m being the
number of partitions);

– dirichlet step: the step used for discretization in the Dirichilet PDF
computation;

– beta step: the step used for discretization in the Beta PDFs compu-
tation.

4



It provides:

– marg distr: The output PFD distribution (n-by-1 matrix);

– cond distr params: The conditional PFD distribution, one per par-
tition;

– mean of marg distr.

• The file IterativeAssessment.m is used for a continuous assessment over k
iterations, either by the model selection approach or without the model
selection approach. It takes as input:

– cumulative demands: an (n x m) matrix of cumulative demands (with
n being the number of iterations and m the number of partitions);

– cumulative failures: an (n x m) matrix of cumulative failing demands
(with n being the number of iterations and m the number of parti-
tions);

– dirichlet step: the step used for discretization in the Dirichlet PDF
computation;

– beta step: the step used for discretization in the Beta PDFs compu-
tation;

– model selection: if set to 1, the dynamic model selection approach
(by Bayes factor) is applied to select the model; if different than 1,
the dynamic model selection is disabled.

It provides:

– marg distr: The output PFD distribution (n-by-1 matrix);

– mean of marg distr.

The other files in the folder which are support functions used by these two
files.

• The Matlab code under the KalmanFilterAssessment folder. The file
KalmanReliabilityAssessment.m for the iterative assessment of the ex-
pected PFD by means of a discrete time-varying Kalman filter formulation.
takes as input:

– demands: an (n x m) matrix of (non-cumulative) demands (with n
being the number of iterations and m the number of partitions);

– truePFD (optional): for our experimentation purpose, the value of
the true PFD to compute so as the offset and the plot.

– % failures: an (n x m) matrix of (non-cumulative) failing demands
(with n being the number of iterations and m the number of parti-
tions);

It provides:

5



– offset: The offset (difference between the estimated and true PFD).
If the truePFD is not provided, offset=[];

– sPFD: structure containing the output of the Kalman filter at each
iteration (see the auxiliary file klamanf.m for details about the struc-
ture)

The folder contains kalmanf.m, a support function used by KalmanRelia-
bilityAssessment.m.

In both cases, reliability is simply R = 1 - PFD (namely, ”1 - marg distr” to
obtain the distribution, or ”1 - mean(marg distr)” to obtain the expected
reliability)

• The file InputForAssessment.xlsx contains the demands and the failing
demands obtained after testing the subject under test described in the
paper, which is NLP-Building-blocks. These are the inputs to be provided
to the Matlab files to reproduce the results in the paper.

• The JavaCode folder contains experimental code to ease the execution of
tests on a generic subject (a REST web service). To use it: - Import the
source code in an IDE (e.g., Eclipse). - Select a subject. - Modify the
endpoints of the service API to invoke. - Optionally, define a profile for
the partitions (if not defined, a uniform profile is generated). - Optionally,
modify the type of input classes generated. The TestFrame class defines
some example classes to generate Strings with different features. This can
be customized depending on the need. - Deploy the subject - Run the
main.class file. Results are printed to a file output.txt. The response code
is used as oracle to get the number of demands and of failed demands.

• Finally, the source code of NLP-Building-Blocks is uploaded, with instruc-
tions on how to deploy it (via docker) and how to invoke it. The name of
the APIs are in the source folder.

6


	Scope
	Introduction
	Automated Functional Testing
	Reliability and Performance Testing
	Reliability assessment from data

