
Project funded by the EU Horizon 2020 programme under the Marie
Skłdowska-Curie grant agreement No 871342

uDevoOps

Software Quality Assurance for Microservice
Development Operations Engineering

Deliverable D2.1.
Analysis and characterization of Microservice

Development Operations Engineering and
Modelling techniques and formalisms for

µDevOps

November 2023

Abstract

This deliverable reports about the activities carried out in work pack-
age 2. The goal is to have a characterization of the context in which
microservices developed according to a DevOps paradigm operate. The
characterization of the context is expected to support quality-assurance
activities (particularly, testing activities) in what we called context-driven
testing.

Since a prominent feature of µDevOps development of microservices is
the massive use of field data as feedback. Such data , gathered though con-
tinuous monitoring, are the best way to characterize the context, as they
can tell about what is the running architecture (e.g., which services and
which version are deployed), how they are interacting, what is their failing
behaviour (how often they fail, and how), and how the user is exercising
the system . Our plan is to exploit all these data to parameterize models
to support several quality-related tasks, such as testing, root cause anal-
ysis, fault prediction, performance and energy analysis and optimization,
etc.

To this aim, we need two main features: monitoring and modelling.
This deliverable explores both these aspects. We first conduct an extensive
study about monitoring tools in the microservice/DevOps context; then
we define possible modelling strategies to capture the concepts relevant
for the subsequent phases.

2

Contents

1 Preliminaries 5
1.1 Microservices Architecture . 5
1.2 DevOps . 5

2 Monitoring in DevOps and MSA 6
2.1 Objective . 7
2.2 Definitions . 7
2.3 Related research . 10

2.3.1 Survey studies . 10
2.3.2 Systematic literature reviews 11

2.4 Search process . 12
2.4.1 Research questions . 12
2.4.2 Tools selection process . 12
2.4.3 Data extraction . 15
2.4.4 Analysis . 16

2.5 Results - Overview . 17
2.6 Results – Functional and Technological Features. Addressed Chal-

lenges . 19
2.6.1 Targets, Features, Motivation 19
2.6.2 Reporting . 20
2.6.3 Technologies . 21
2.6.4 Implementation/supported languages 21
2.6.5 Addressed challenges . 25

2.7 Results – What is monitored . 27
2.7.1 User-oriented metrics . 27
2.7.2 System-oriented metrics 29
2.7.3 Distributed tracing . 29
2.7.4 Failures/events logging . 29
2.7.5 Targeted quality attribute 31

2.8 Results – How is monitoring done 33
2.8.1 Instrumentation . 34
2.8.2 Monitoring patterns and practices 35
2.8.3 Monitoring Granularity 36
2.8.4 Integration with Testing 38

2.9 Discussion . 38
2.9.1 Main findings and guidance for DevOps engineers 39
2.9.2 Open challenges for researchers and tool vendors 44
2.9.3 Cross-cutting findings . 46

3 Modeling 53
3.1 Usage modeling . 53
3.2 Failure modeling . 54

3

4 Architectural modelling 58

5 Study on the DSML(s) for µDevOps 70
5.1 Identification of needs and practices of project partners 71

5.1.1 Expected usage of the DSML in µDevOps 72
5.1.2 What needs to be represented 73
5.1.3 Characteristics of the DSML 74

5.2 Proposal for the µDevOps DSML(s) 75

6 Conclusion 77

4

1 Preliminaries

1.1 Microservices Architecture
Microservice architecture (MSA) is a software architectural style which is

gaining popularity in many companies [33]. Netflix, eBay, Amazon, Twit-
ter, PayPal and many other web-based services have evolved to this paradigm
recently. MSA shifts traditional service-oriented architectures (SOA) from a
share-as-much-as-you-can philosophy, focused on reuse, to a share-nothing phi-
losophy, emphasizing strong service decoupling.

MSA applications are built by architecting a set of services, each providing a
well-defined and self-contained business capability and high independence from
others. They are usually developed according to the API Gateway pattern,
where “like a facade, an API gateway encapsulates the application’s internal
architecture and provides an API to its clients; it may also have other respon-
sibilities, such as authentication, monitoring, and rate limiting” [72].

Combined with technologies such as RESTful protocols and containers and
agile development practices such as DevOps, MSA features lightweight commu-
nication and independent and rapid service deployment. These characteristics
promote scalability, flexibility, maintainability, prompt reaction to changes and
failures, and frequent software releases.

1.2 DevOps
The term DevOps (development and operations) indicates “a set of practices

intended to reduce the time between committing a change to a system and the
change being placed into normal production, while ensuring high quality” [7].

Figure 1: Microservice Architecture

5

DevOps cycle is composed by many phases, each one with a different purpose
[45]. According to Virmani (IBM) [90], DevOps is made by the following phases:

• Continuous Planning: it allows a continuous feedback channel with cus-
tomers in order to adjust the business plan if needed;

• Continuous Integration: it tries to integrate early the changes in the sys-
tem sharing them with the team, and allowing to continuously validate
the behavior;

• Continuous Deployment: it aims to reduce the delay in the software deliv-
ery automatizing the deployment and provisioning of hardware and various
cloud providers;

• Continuous Testing: complementary to Continuous deploy, it aims to au-
tomate each testing process in order to make the software delivery faster;

• Continuous Monitoring: it observe various quality parameters throughout
and hence ability to react to any surprises in timely manner.

The overall goal is “context modelling” to enable context-driven testing of
MSA - a way we aim to follow is AIOps in MSA, to enable MSA improvement
in terms of testing, deployment, quality assurance, and so on. The deliverable
should explore the state-of-the-art on topics related to context modelling (in
particular in MSA): this concerns monitoring strategies and tools, and then
modelling, with these main questions: WHAT IS MONITORED, HOW
MONITORING IS DONE, IF/HOW MODELLING IS USED. As for
modelling dimensions we considered: usage (user interaction), failures, architec-
ture (and how it changes), behaviour (e.g., interaction between MS).

2 Monitoring in DevOps and MSA

It is well-known in both academia [22] and practice [94] that developing and
operating microservice-based systems is a difficult task, mainly due to their dis-
tributed nature, complex and dynamic deployments, and technological hetero-
geneity [78]. Having a stable monitoring infrastructure is a strong requirement
for operating microservice-based systems where relevant incidents (e.g., faults,
performance issues, security breaches) are promptly detected and diagnosed [93].

Various monitoring tools are currently widely-used by DevOps teams for
collecting, aggregating, and analysing metrics in order to give meaningful in-
sights about the system’s overall health and behaviour at runtime. In the con-
text of DevOps, monitoring tools continuously collect system-level metrics (e.g.,
CPU load, network traffic statistics, failures), aggregate them into higher-level
metrics (if needed), and analyse them, primarily with the goal of alerting De-
vOps teams when a relevant signal is detected, so that they can take correc-
tive actions [26, 43]. Representative examples of such monitoring tool include

6

Prometheus1, Jaeger2, and Elasticsearch3.
However, the current landscape of monitoring tools for DevOps and microser-

vices is extremely fragmented, with tens of available tools, each with different
goals, monitored entities, produced metrics, technical constraints, underlying
technologies, applied monitoring patterns, etc. As an indication, a recent study
targeting microservices practitioners identified 23 different monitoring tools used
by practitioners when monitoring microservices systems [94]. In this context,
choosing the right monitoring tool for DevOps and microservices is definitely
not trivial and can lead to severe consequences in terms of tool lock-in and
systems’ quality of service.

2.1 Objective
The objective of our study is to systematically identify, classify, and analyze

available monitoring tools for DevOps and microservices. In particular, we are
interested in those tools that allow developers to dynamically gather, interpret,
and act upon information about a running microservice-based system in the
context of DevOps.

2.2 Definitions
Monitoring. Monitoring is the process of dynamically gathering, interpreting,
and elaborating data about the execution of the system under test (SUT) [75].

We distinguish direct and indirect monitoring, based on the source of in-
formation, that is, who produces the information. Monitoring is direct if the
monitored information comes directly from the SUT, indirect if the monitored
information comes from the software, physical or human environment where the
SUT operates, for instance OS resources consumption, data read by sensors or
data about user interactions with the system.

The activities for gathering information include:

• logging : the process of recording textual and/or numerical information
about events of interest

• tracing : the process of recording information about the control flow of a
SUT during its execution.

Logging and tracing differ in their goal, even when implemented with similar
techniques, for instance by instrumentation: Tracing records the execution flow
of the SUT execution without referring to specific classes of events of interest,
while logging focuses on the events of interest, for instance, recording errors or
failures
Monitoring metrics. A summary of the key metrics for microservices ar-
chitectures is provided by Fowler [32] and Waseem et al. [94]. Key metrics can

1https://prometheus.io
2https://www.jaegertracing.io
3https://www.elastic.co/elasticsearch

7

https://prometheus.io
https://www.jaegertracing.io
https://www.elastic.co/elasticsearch

be divided in two sets: host and infrastructure metrics, and microservice met-
rics. Host and infrastructure metrics are those that pertain to the status of
the infrastructure and the servers on which the microservice is running, while
microservice metrics are metrics that are unique to the individual microservice.
Host and infrastructure metrics are:

• CPU utilized by the microservice on each host;

• RAM utilized by the microservice on each host;

• available threads;

• microservice’s open file descriptors (FD);

• number of database connections that the microservice has to any databases
it uses.

Key metrics at the microservice level can depend on the language used to
implement the microservice, in general the following metrics can be considered:

• language-specific key metrics;

• availability of the microservice;

• service-level agreement (SLA) of the service;

• latency (of both the service as a whole and its API endpoints);

• success of API endpoints;

• responses and average response times of API endpoints;

• services (clients) from which API requests originate (along with which
endpoints they send requests to);

• errors and exceptions (both handled and unhandled);

• health and status of dependencies.

Monitoring practices. Waseem et al. [94] identified six different monitoring
practices from the grey literature [16,70,80]:

• log management: the process for managing event logs (generation, trans-
mission, storage, analysis, disposition);

• exception tracking: handled and unhandled exceptions are gathered in a
log with their exception traces;

• health check API: used to get the operational status, performance, and
dependencies of microservices;

• log deployment: logging of the microservices during deployment phase;

8

• audit logging: recording event logs, regarding a sequence of activities or a
specific activity;

• distributed tracking: monitoring the microservices behavior monitoring
the tracing all the involved services.

These monitoring practices are enabled by a set of observability patterns, as
depicted in Figure 2 [73].

Figure 2: Obsevability patterns [73]

Monitoring tools. Waseem et al. [94] classify tools for monitoring into two
categories: libraries and platforms. Libraries are used during the development
of microservices and permit collecting the application data. Platforms allow
gathering and analyzing data from different sources, such as the hosts, infras-
tructure, and microservices [80].
Monitoring challenges. According to Waseem et al. [94] we report the fol-
lowing challenges:

• MC1 Collection of monitoring metrics data and logs from containers

• MC2 Distributed tracing

• MC3 Having many components to monitor (complexity)

• MC4 Performance monitoring

• MC5 Analyzing the collected data

9

• MC6 Failure zone detection

• MC7 Availability of the monitoring tools

• MC8 Monitoring of application running inside containers

• MC9 Maintaining monitoring infrastructures.

2.3 Related research
In this Section, we report about surveys and secondary studies conducted

on microservices, and their relation with our study.

2.3.1 Survey studies

In recent years, researchers have conducted survey studies concerning several
aspects of microservice-based systems. Waseem et al. conducted a comprehen-
sive survey with 106 participants and 6 interviews with practitioners [94], inves-
tigating aspects ranging from design to monitoring and testing of microservices.
They identified a list of 9 challenges that we have exploited in this study to
check to what extent the existing tools tackle them. The survey includes a list
of 13 monitoring tools the authors used in their survey.

Knoche et al. conducted a survey with 71 participants, exploring the chal-
lenges faced upon the need of modernizing legacy systems. Their analysis in-
cludes the impact of using microservices on runtime performance [53], which is
clearly affected by monitoring too.

Viggiato et al. surveyed the practices adopted in industry for development
and use of microservices, such as the adopted programming languages and tech-
nologies, as well as the advantages and challenges brought by microservices [89].
The survey involved 122 participants. Among the challenges, they point out the
microservices testing, faults diagnosing and distributed transactions.

Challenges related to the distributed nature of microservice architectures,
among others, are also inferred by Ghofrani et al. in a survey study with 25
practitioners [35]. These are clearly related to the challenges of monitoring we
considered in this report (identified in [94]).

Another survey with 21 participants was conducted by Wang et al. [92],
about development of microservices, at architectural, infrastructural and code
management level. They identified the investment in robust logging and mon-
itoring infrastructure, among others, as a best practices for successfully devel-
oping microservices.

There are some other surveys with similar analyses, but with less than 20
participants, hence with a more limited external validity, such as [42,99,101].

These works focus on conducting surveys with practitioners, and their out-
puts are valuable for identifying main needs and challenges. Our study can
complement these results by investigating whether and how existing tools in
the grey literature fulfill these needs and address specific challenges.

10

2.3.2 Systematic literature reviews

Besides the surveys, researchers have conducted mapping studies and sys-
tematic literature reviews on microservices and DevOps. Di Francesco et al.
looked at the state of the art on architecting activities with microservices [33],
defining a classification framework for categorizing the research on architecting
microservices including architectural solutions, methods, and techniques (e.g.,
tactics, patterns, styles, views, models, reference architectures, or architectural
languages). This was applied a set of 71 selected studies.

The same team later extended the work, by including further primary stud-
ies (from 71 to 103), and elaborating more on extracted data looking at the
interactions between various parameters of the classification framework [22].

Soldani et al. reviews the grey literature to depict an overview about the
academic research and industry practices starting from 51 selected industrial
studies, focusing on the technical/operational “pains” and “gains” of micro ser-
vices [78]. They taxonomically classify, and systematically compare the pains
and gains of micro services from existing grey literature, from design and devel-
opment point of view. The challenges they identified (i.e., the "pains") pertain
(at development time) to the management of distributed storage and application
testing, and (at operational time) to large consumption of network and comput-
ing resources compared to other architectural styles. Part of this consumption
is indeed due to the features of the monitoring tools and their configuration,
that we discussed in this report.

Another work by Waseem [93], that precedes the above-discussed survey,
focus on identifying and classifying the literature on micro services in DevOps,
starting from a set of 47 primary studies. This interestingly includes DevOps
explicitly in the study. Their extensive analysis outlines the state of the art
(at 2018) about all the phases of development and operation (requirements, de-
sign, implementation, testing, deployment, monitoring, organization, resource
management), including the analysis of MSA description methods, patterns,
qualities attributes, support tools, application domains, and research opportu-
nities. The work identified a set of 11 monitoring tools, which are however not
analyzed as it was only one of the many aspects covered by the paper and was
not the focus of their paper. Our study, in contrast, is entirely focused on mon-
itoring tools; we have extensively identified and analyzed available tools in the
grey literature and provided recommendations on their selection and usage.

Although relevant and very interesting, none of these studies conduct a sys-
tematic review and comparison of monitoring tools. Several of them identified
challenges related to monitoring, whose impact is deemed of extreme importance
by practitioners. Indeed, having a stable monitoring infrastructure is a strong
requirement for operating micro service-based systems where relevant incidents
(e.g. faults, performance issues, security breaches) are promptly detected and
diagnosed, and our aim was to provide a comprehensive view about the pros
and cons of the existing tools. Our findings are therefore complementary, and
to some extent orthogonal, to all the previous papers.

11

2.4 Search process

2.4.1 Research questions

We formulate the following high-level research questions:

• RQ1. What are the main characteristics of monitoring tools for microservice-
based systems? With this RQ, we will investigate the main functional and
technological features of the tools, and analyze if and how the tools ad-
dress the list of relevant monitoring challenges as identified by Waseem et
al. [94].

• RQ2. What information is gathered to characterize the behaviour of the
monitored system? With this RQ, we focus on which metrics, traces and
logs the tools is able to extract.

• RQ3. How does the tool implement the monitoring process? This RQ
aims at categorizing the patterns and practices used to gather data as
well as its integration with testing.

Each of these questions will be explored with reference to a list of dimensions
to characterize the functional and technological features, the gathered metrics,
and the way these metrics are gathered, e.g., in terms of monitoring patterns,
practices and granularity.

2.4.2 Tools selection process

To address the above questions, the research is conducted according to the
protocol shown in Figure 3.

The search and selection process considered GitHub as primary source to find
relevant monitoring tools 1○. However, although GitHub accounts for over 100
million developers and 372 million repositories as of January 2023, we comple-
mented the search via the Google search 2○ engine to also cover grey literature
from which tools and prototype can be made available on the web (e.g., personal,
companies or institutions’ web pages). In particular, we have:

• searched for awesome monitoring devops on GitHub and manually checked
all “awesome repositories”;

• searched for all repositories on Github having both monitoring and De-
vOps as topics of their description;

• searched for all repositories on Github having both monitoring and mi-
croservices as topics of their description;

• searched for monitoring AND devops on Google and manually analyzing
the first 100 results;

• searched for monitoring AND microservices on Google and manually an-
alyzing the first 100 results.

12

Merge

Tools
identification

Reference
test set

GitHub Grey literature - Google

Monitoring
DevOps

Monitoring
Microservices

Monitoring
Microservices

Monitoring
DevOps

Extract and
classify

Initial RQs
scheme

Initial test
set

Scheme
refining?

Refine
scheme

Classify
others

Analysis

• Inclusion/Exclusion
criteria

• 2 teams & 1 arbiter
• Merge and check in

plenary meeting

• Each team
classify a
subset Validation

yes

no

• Plenary
meeting

Filled
scheme

Refined
scheme

M
ain schem

e
refining

loop

Search
and selection

1 2

3

4

5

6
7

8 9

GitHub - 79 sources
Google - 15 sources

94 sources/
181 tools

71 tools

Figure 3: Protocol

The search process was performed in August, 2022.
By merging the results of these searches 3○, we obtained an initial list of

94 sources (e.g., repositories, web pages), where each source may contain more
than one tool. These are 7 awesome repositories, 72 sources from searching on
GitHub with the topics and 15 Google pages.

We then applied the following inclusion and exclusion criteria to the initial
sources:

• Inclusion criteria (sources)

– IC1: Sources describing at least one monitoring tool that gathers
data about the execution of a running system;

– IC2: Sources discussing either DevOps practices or microservices-
based systems;

– IC3: Sources written in English.

• Exclusion criteria (sources)

– EC1: Sources whose contents strongly overlap with those of an already-
considered source;

13

– EC2: Entries that are not available, and hence not analyzable (e.g.,
the link to a web page is broken);

– EC3: Sources that refer exclusively to tools whose primary aim is
not monitoring, such as development frameworks, visualization plat-
forms, traces manipulators, etc;

– EC4: Sources that are in the form of scientific publication;

– EC5: Sources reporting exclusively the basic principles of DevOps
and microservices, without mentioning any monitoring tool;

– EC6: Videos, podcasts, and webinars since they are too time-consuming
to be considered for this phase of the study.

This allowed us to exclude 13 sources resulting in 81 sources (that are: 3 awe-
some repositories, 6 google pages, and all the 72 repositories coming from the
topics search)4. On this resulting list of sources, we extracted an initial list of
181 tools. Then, we applied the following Inclusion/Exclusion criteria to the
list of tools:

• Inclusion criteria (tools)

– IC1: The tool gathers data about the execution of a running system;

– IC2: The tool allows monitoring of microservice-based systems and/or
DevOps-based processes;

– IC3: The tool is self-contained, meaning that it does not rely exclu-
sively on being integrated with a 3rd party;

– IC4: The tool is publicly available (either as an open-source or com-
mercial product);

– IC5: The documentation of the tool is publicly available and it con-
tains enough information for assessing the use cases, monitoring strat-
egy and to install the system;

– IC6: The documentation of the tool is in English;

• Exclusion criteria (tools)

– EC1: Tools whose primary aim is not monitoring, such as develop-
ment frameworks (e.g., Mortar), visualization platforms (e.g., Graphite),
data processing pipelines (e.g., Logstash) etc;

– EC2: The tool is not accessible, either available for download as a
binary that can be run on current operating systems from an offi-
cial website or an affiliated platform supporting it (e.g., a GitHub
repository), or as a SaaS product, centrally hosted;

– EC3: The tool is explicitly declared as either discontinued, unmain-
tained, or not yet released.

4Most repositories and Google pages contained lists of tools, while the repositories coming
from the topic search single tools.

14

The process produced a final list of 71 monitoring tools 4○ to analyze,
reported in Table 1. Table 2 details, for the two primary sources (i.e., GitHub
and Google), the respective resulting tools. Notably, GitHub gave a significantly
higher number of tools. Two research teams were involved in applying the
criteria independently to the entire set of tools, with the support of one senior
researcher as arbiter. The results were then compared and conflicts were solved.
We used Cohen’s kappa to assess the level of agreement between the raters.
This statistic is a good fit in this case, since we only have two raters, both
evaluating identical items (the monitoring tools). According to the common
interpretation in literature [31], the results (k = 0.714) show a substantial level
of agreement. This confirms the reliability of the selection phase. Most of the
tools were excluded due to EC1. In particular, the primary reason for applying
EC1 to the tools was that they provided only visualization support, without
gathering data about the execution of a running system (i.e., IC1). Such tools
require supplementation by others that provide them with data. Other tools
were excluded by EC3, primarily because they were unmaintained. Only a few
tools were discarded due to EC2.

The selected tools have then been compared with a reference test set, as
suggested by well-known guidelines on secondary studies [66], [52]. To confirm
that the list of selected tools is representative enough, it should in fact include
the tools in the reference test set. The test set includes the following 5 moni-
toring tools selected according to the GitHub’s stars, denoting their popularity:
Prometheus, Netdata, Jaeger, Zipkin, and ELK Stack. All these tools were
included in the list of 71 tools.

2.4.3 Data extraction

With data extraction, we gather key information about each monitoring tool
useful for analysis and classification 5○. Starting from the research questions
(initial RQs scheme in Figure 3), we have defined a scheme with 26 dimensions.
The initial scheme was defined in plenary meetings based on authors’ previ-
ous experience and on the literature on microservices monitoring, e.g., [94].
To refine and agree on the scheme, we used the initial test set approach [66]:
we initially assigned a same set of 4 tools (Prometheus, Jaeger, Zipkin, and
Apache skywalking) to each of the 4 involved teams, who independently classi-
fied them according to the initial scheme. This preliminary phase ensured that
the meaning of dimensions was the same for all the 4 teams. The scheme was
iteratively refined in a number of 4 plenary meetings, where we discussed the
classifications’ findings and finalized the dimensions definition (6○, 7○).

We then performed a horizontal classification on the whole set of tools 8○,
namely by assigning 18 tools to each team, who independently classified the
tools according to all dimensions of the scheme. Finally, in order to ensure
a homogeneous classification between the teams, the tools were re-classified
vertically : each team was assigned a subset of sub-dimensions and classified
all the 71 tools for only the assigned dimensions. This allowed refining the
scheme further, since it favoured the detection of inconsistent classifications

15

Table 1: Analysed monitoring tools

ID Name ID Name ID Name ID Name

T1 Prometheus T19 fluent-bit T37 ServerDensity T55 easeagent

T2 Zipkin T20 influxdata T38 InsightOps T56 syros

T3 Apache skywalking T21 OpenTSDB T39 AppSignal T57 OpenSignals

T4 Jaeger T22 kairosDB T40 netdata T58 haystack-client-java

T5 Nagios enterprise T23 elasticsearch T41 pyroscope T59 Monit

T6 Zabbix enterprise T24 javamelody github T42 gatus T60 Splunk

T7 Ganglia T25 kamon github T43 cloudprober T61 ChaosSearch

T8 Zenoss enterprise T26 Bosun T44 dd-agent (DataDog) T62 Sematext

T9 Opserver T27 OpenTelemetry T45 swagger-stats T63 AppDynamics

T10 Icinga T28 pinpoint github T46 kardia T64 Reimann

T11 Naemon T29 AWS CloudWatch T47 Health T65 Glowroot

T12 Shinken T30 StackDriver T48 WebApiMonitoring T66 GrayLog

T13 Centreon T31 Sensu T49 terminator T67 DataDog

T14 Opsview T32 Sentry T50 MetroFunnel T68 Librato (now AppOptics)

T15 Check_mk T33 CopperEgg T51 scope T69 Akamai mPulse

T16 NSCP T34 loggly T52 MyPerf4J T70 Sumo Logic

T17 collectd T35 NewRelic T53 vigil T71 Dynatrace

T18 falcon-plus github T36 Papertrail T54 Chronos

performed by the teams on a given dimension during the horizontal classification
phase. Dedicated online meetings solved such disagreements. Table 3 reports
the identified dimensions and sub-dimensions.

2.4.4 Analysis

9○ Data collection and summarization are part of the data analysis process,
which aims to comprehend, evaluate, and categorize state-of-the-art monitor-
ing tools. The information for each item extracted are tabulated and visually
illustrated. In particular, we analyzed the tools considering the groups of di-
mensions defined in Table 3. We examine the data that has been extracted to
perform both a quantitative and qualitative analysis (Section 2.5-2.8). Then,
a cross-cutting analysis relating sub-dimensions was also performed in order to
highlight interesting patterns in the characteristics of the tools (Section 2.9).

16

Table 2: Source-Tool mapping

Source Query Tools

GitHub

Monitoring

DevOps

T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11,

T12, T13, T14, T15, T16, T17, T18, T19, T20,

T21, T22, T23, T24,T25, T26, T27, T28, T29,

T30, T31, T32, T33, T34, T35,T36, T37, T38,

T39, T40, T41, T42, T43, T44, T45, T62

Monitoring

Microservices

T32, T46, T47, T48, T49, T50, T51, T52, T53,

T54, T55, T56, T57, T58

Google

Monitoring

DevOps

T1, T5, T6, T31, T32, T35, T59, T60, T61, T62,

T63, T67, T68, T69, T70, T71

Monitoring

Microservices

T1, T29, T44, T59, T60, T61, T62, T63, T64,

T65, T66

2.5 Results - Overview
Figure 4 shows the number of selected (included/excluded) tools by source

type.5 GitHub provided the majority of the tools, but with also the biggest
number of exclusions (mainly for lack of documentation - IC5). Out of the an-
alyzed tools, 53/71 (73%) are open source, while 18/71 (25%) are commercial
tools.

We looked at the first release date of the tools and we noticed that around
2014-2015 there has been a boost in the number of tools released and that
further 24 tools were released since then.

For each tool, we retrieved information about all the release dates, so as to
check if the tool is still actively maintained. Specifically, the year of the first and
last release available can provide information to analyse longevity and current
maintenance activity.

Looking at the tools with last release date on 2022 (data gathered in Novem-
ber, 2022), we notice that 47/71 tools have a release in 2022 (66%), while the last
release date of the remaining 25/71 (34%) tools are older (in some cases, such
as NewRelic last-released in 2014, this can indicate that the tool is no longer
maintained). In particular, more than 75% of the tools have a last release in

5Note that the summed counts in the image can exceed the numbers in the text since tools
can belong to more than one category.

17

Table 3: The data extraction form of this study

Category RQ Dimensions Definition Type/Domain

O
ve

rv
ie

w

Id The internally used ID of the tool ”T”+[numeric]

Name The name of the tool Free text

Metadata Website/Link Link to the tool Url

Provider Organization/authors that developed the tool Free text

Release The release version the analysis was carried out on Free text

First release Date of the first available release Date

Last release Date of the latest available release Date

Open source Whether the tool’s sources are available openly [Yes, No]

R
Q

1

Target The target system to monitor
[Microservices, web services,

distributed systems in general]

Features/motivation Which high-level features are claimed Free text

Available format(s) to export data
List of formats to export monitored data

(e.g., JSON, CSV)
Free text

General characteristics Visualization The visualization features offered by the tool Free text

Programming language(s) The language(s) the tool is programmed with Free text

Integration/Dependency tools Required and integrable tools Free text

Assumptions Properties that the monitored system should have Free text

Addressed challenges, identified by

Waseem et al.

MC1 Collection of monitoring metrics data

and logs from containers

MC2 Distributed tracing

MC3 Many components to monitor (complexity)

MC4 Performance monitoring

MC5 Analyzing the collected data,

MC6 Failure zone detection

MC7 Availability of the monitoring tools

MC8 Monitoring of application running in containers

MC9 Maintaining monitoring infrastructures

[MC1, MC2, MC3, MC4, MC5,

MC6, MC7, MC8, MC9]

R
Q

2

Monitoring metrics (user-oriented) High level, user-oriented metrics (e.g., failure, health) Free text

Monitoring metrics (system-oriented) Low level, system-oriented metrics (e.g., cpu, memory) Free text

What is monitored Requests tracing Whether the tool support requests tracing [Yes, No]

Events/Failures logging Whether the tool support event/failures logging [Yes, No]

Targeted quality attribute(s) The quality attribute(s) targeted by the tools
[Performance, Energy, Availability, Reliability,

Security]

R
Q

3

Monitoring patterns Monitoring patterns implemented by the tool

[Health Check API Pattern, Distributed

Tracing Pattern, Application Metrics Pattern,

Audit Logging Pattern, Exception Tracking

Pattern, Log Aggregation Pattern, Other]

How is monitored Monitoring granularity The granularity of the monitored system
[MSA, microservice,

VM/container, infrastructure]

Monitoring practices Monitoring practices adopted by the tool

[Log management, exception tracking,

health check API, deployment logging,

audit logging, distributed tracking]

Instrumentation Information about what instrumentation is required Free text

Integration with testing Whether the tool support testing [Yes, No]

2021 or 2022.
We further analyzed this aspect by combining data about longevity and

Open Source, and we noticed that proprietary tools are generally more stable,
with a couple of exceptions such as Zabbix and Nagios, which are Open Source
and live since more than 20 years. The longest-living commercial tool is Splunk.

18

Gith
ub

 Aw
eso

me

Mon
ito

r D
ev

Ops

Gith
ub

 To
pic

Mon
ito

r D
ev

Ops

Gith
ub

 To
pic

Mon
ito

r M
icr

ose
rvi

ce

Goo
gle

 Mon
ito

r

Dev
Ops

Goo
gle

 Mon
ito

r

Micr
ose

rvi
ce

0

20

40

60

80

100

Co
un

t

40

9
15 16

11

54

15

32

8 7

Tools count by source type
Total
Included
Excluded

Figure 4: Tools selection count

2.6 Results – Functional and Technological Features. Ad-
dressed Challenges

2.6.1 Targets, Features, Motivation

We have analysed the scope of application of the tools, i.e., the granularity
they focus on. Although all the included tools allow monitoring of microservices,
we distinguish between tools conceived for monitoring distributed systems in
general, tools primarily focused on Web services (as technology to offer services)
and tools specifically focused on microservices (as software architecture).

As shown in Figure 5, more than a half of the tools target distributed systems
in general (42 tools, 59%), while web services (14 tools, 21%) and microservices
(15, tools, 20%) were found in relatively few case, i.e., in almost a quarter of the
tools, each. This is partly explained by the more recent spread of microservices.

Looking at the main features/motivation in Figure 6, the tools clearly all
have collection and monitoring services (in form of traces, logs and metrics);
most of them (66.2%) provide visualization and reporting areas (with visual
elements such as panels, graphs or diagrams – more details will follow). Less
than 40% have alerting features (e.g., if some thresholds are triggered, alerts
are sent to users, in the form of push notifications, emails or web-hooks) and
automated analysis (based on collected data, the tools are able to produce and
automated, and in some case intelligent, analysis in order to produce data in-
sights). A total of 16 tools (22%) offered the possibility to search under the
raw data with custom query languages. 10 tools (14%) can offer their features
to external modules (or even to 3rd-party apps) as API endpoints. Finally, 4
tools (≈6%) offer optimization features in order to provide code enhancements

19

Microservices;
14

Web Services;
15

Distributed
Systems;

42

Figure 5: Tools target

4

10

16

26

28

47

71

Optimization

Expose Data as API

Analyze / Search

Automated / Intelligent Analysis

Alerting

Visualization / Reporting

Collect / Monitor

Figure 6: Tools’ Features/Motivation

to make request processing faster.
The target and features/motivation is the first characteristics to look at when

selecting a tool: for instance, while most tools offer some visualization/reporting
facility, only few have some form of optimization, and only few expose data as
API. These are features that, if needed, will significantly restrict the space of
possible choices.

2.6.2 Reporting

In terms of reporting, the tools have been inspected to determine how the in-
formation gathered through monitoring is reported (either for other interacting
applications that has to consume that information and/or for the final user). We
focus on two main aspects of reporting: data export format and visualization.

Table 4 reports the tools by data export format category. JSON is the
most used format; it is both human-readable and suitable to be easily read
from other applications. The second one is CSV, which is one of the most used

20

storage formats. The third category is DB. This includes a batch of possible
databases (MySQL, Apache Cassandra, Elasticsearch, RRD, InfluxDB among
others). Specifically, the top-DB are: MySQL and Elasticsearch, followed by
RRD tool and InfluxDB.

The last format among the top-4 ones is PDF. Clearly, this is important for
the interoperability, useful when gathered data need to be exploited by other
applications (e.g., data analytics or decision support systems).

Regarding visualization, 45/71 tools provide dashboards as reporting means
to show the monitoring outcomes. Dashboards are defined by Tableau6 as “a
collection of several views, letting you compare a variety of data simultaneously”.
In particular, diagrams, charts, and tables are usual visualization means to
construct a dashboard.

The most common one is charts. The usage of tables is also very popular,
as they allow easily reporting summary results. Tables are very useful when
placed into a dashboard and coupled with graphs to provide additional details.
Examples of tools using dashboards, which are very effective for visual analysis
and decisions support, are Zabbik, Icinga, Zenoss; others also exploit exter-
nal tools, like Prometheus that can exploit the Graphana visualization platform.
The detailed breakdown is in Table 5.

2.6.3 Technologies

2.6.4 Implementation/supported languages

Languages should be considered when choosing a tool, since they impact the
possible integration of the monitoring tool with tools of the organization adopt-
ing it (e.g., visualization, analytics, recommender systems) and are related to
the extensibility, evolvability and maintainability of the tool. Also, they can
indirectly impact the monitoring tool performance (e.g., resource consumption,
overhead). From our analysis, 27/71 tools report multiple languages in their doc-
umentation. In particular, 23/71 are implemented with more than one language,
while 4/71 (T22, T28, T30, T36) are implemented mostly in one language, but
they support multiple languages. The main reason for the usage/support for
multiple languages is the need for agents, sidecars, and/or proxies in different
native languages to allow using the monitoring tools in projects developed in
various languages (e.g. Apache Skywalking, T3). Moreover, the greatest part
of the monitoring tools provides user interfaces developed with dedicated lan-
guages (e.g. HTML, JavaScript, and so on) (e.g. Jaeger, T4). The most used
languages are Go and Java, followed by Python and JavaScript. Table 6 reports
the detailed results.
Required technologies. Figure 7 reports the main required technologies
for the selected monitoring tools. The integration with visualization tools (like
Grafana, adopted by T1 and T6, or Graphite, adopted by T7 and T10 among

6Tableau is a leading company of data visualization software production (https://www.
tableau.com)

21

https://www.tableau.com
https://www.tableau.com

Table 4: Data Export formats

Export
format

#Tools (Per-
centage)

Tools

JSON 49 (69.0%) T1, T2, T3, T4, T5, T6, T7, T8, T10, T11, T12, T15, T17, T19, T20, T21,
T22, T23, T24, T25, T26, T27, T28, T29, T30, T31, T32, T34, T36, T38, T39,
T40, T41, T42, T43, T45, T46, T51, T54, T55, T56, T58, T61, T62, T67, T68,
T69, T70, T71

CSV 25 (35.2%) T1, T2, T7, T8, T10, T12, T13, T14, T15, T17, T19, T20, T28, T40, T43,
T45, T54, T55, T56, T58, T59, T63, T65, T66, T70

DB 12 (16.9%) T2, T8, T11, T13, T17, T18, T28, T33, T34, T40, T52, T67

PDF 6 (8.5%) T10, T12, T13, T14, T15, T60

XML 5 (7.0%) T6, T12, T15, T24, T63

TXT 5 (7.0%) T26, T50, T51, T57, T59

not re-
ported

5 (7.0%) T9, T16, T33, T37, T53

user-
defined

4 (5.6%) T47, T64, T66, T67

log 4 (5.6%) T34, T38, T48, T55

Excel 3 (4.2%) T8, T13, T14

Raw 3 (4.2%) T12, T44, T49

protobuf 3 (4.2%) T2, T3, T54

S3 2 (2.8%) T12, T61

Word 2 (2.8%) T13, T14

HTML 2 (2.8%) T8, T40

mq 2 (2.8%) T2, T28

YAML 1 (1.3%) T6

HTTP 1 (1.3%) T2

RTF 1 (1.3%) T14

streams 1 (1.3%) T8

YML 1 (1.3%) T20

ODT 1 (1.3%) T14

H5 1 (1.3%) T57

TSV 1 (1.3%) T36

BIN 1 (1.3%) T27

DF 1 (1.3%) T57

Powerpoint 1 (1.3%) T13

Markdown 1 (1.3%) T40

22

Table 5: Data visualization means

Viz means #Tools (Per-
centage)

Tools

Charts 56 (78.8%) T1, T2, T3, T4, T5, T6, T7, T8,
T10, T11, T12, T13, T14, T15,
T16, T17, T18, T19, T20, T21,
T22, T23, T24, T25, T26, T27,
T29, T30, T32, T33, T34, T35,
T37, T38, T39, T40, T41, T43,
T45, T51, T52, T54, T55, T58,
T60, T61, T62, T63, T64, T65,
T66, T67, T68, T69, T70, T71

Tables 52 (73.2%) T1, T3, T5, T6, T7, T8, T10,
T11, T12, T13, T15, T16, T19,
T20, T21, T22, T23, T24, T25,
T26, T29, T30, T32, T33, T34,
T35, T37, T38, T40, T41, T42,
T43, T45, T46, T47, T52, T53,
T55, T58, T59, T60, T61, T62,
T63, T64, T65, T66, T67, T68,
T69, T70, T71

Dashboard 46 (64.7%) T1, T5, T6, T7, T8, T10, T11,
T12, T13, T15, T16, T18, T19,
T20, T21, T22, T23, T25, T26,
T29, T30, T31, T32, T33, T34,
T35, T37, T38, T40, T41, T43,
T45, T52, T55, T58, T60, T61,
T62, T63, T64, T66, T67, T68,
T69, T70, T71

N/A 9 (12.7%) T9, T17, T27, T44, T48, T49,
T50, T56, T57

others) is fundamental for 35% of the tools (25/71), in line with the results in
Table 5.

Collecting is the second type of technology, since the monitoring tools need
integration with other tools for data collection during the execution of the sys-
tem under monitoring. DB technologies are required by approximately 30% of
tools for persistence. In addition, many monitoring tools exploit alerting/event
management technologies, as they need to capture data in real-time from event
sources (like other services or devices), e.g., T4 with Kafka. Clearly, the number
and type of required technologies can also affect the easiness of adopting and
integrating a tool in the organization.
Assumptions. Table 7 reports the assumptions stated for the selected tools,
which often come in the form of requirements. For instance, the most common
assumption is about the operating system and libraries needed to install and
make the tool work. A bunch of tools (7/71) have less stringent assumptions
and support several systems. Other assumptions regard the way in which tools
are executed. For instance, they regard the need for agents and instrumenta-

23

Table 6: Tools implementation/supported languages

Language #Tools (Per-
centage)

Tools

Go 27 (38.0%) T1, T3, T4, T6, T8, T18, T20, T23, T26, T27, T28, T29, T30, T31, T32, T35,
T41, T42, T43, T44, T49, T51, T56, T67, T68, T70, T71

Java 25 (35.2%) T2, T3, T8, T21, T22, T23, T24, T27, T28, T30, T32, T35, T38, T50, T52,
T55, T57, T58, T62, T63, T65, T66, T70, T71

Python 22 (31.0%) T3, T5, T7, T8, T12, T14, T15, T16, T18, T22, T23, T27, T28, T30, T32,
T34, T37, T38, T60, T63, T70, T71

JavaScript 20 (28.2%) T3, T4, T6, T13, T15, T22, T23, T27, T34, T36, T37, T38, T45, T46, T51,
T56, T62, T66, T68, T69

PHP 14 (19.7%) T3, T5, T6, T7, T13, T22, T23, T27, T28, T32, T35, T63, T68, T71

C 12 (16.9%) T5, T6, T7, T11, T16, T17, T19, T28, T35, T40, T59, T63

Ruby 11 (15.5%) T23, T27, T32, T33, T35, T36, T38, T39, T68, T70, T71

Node.js 10 (14.1%) T3, T14, T30, T32, T35, T38, T39, T63, T68, T71

C++ 9 (12.7%) T3, T5, T10, T15, T16, T27, T28, T60, T63

.NET 6 (8.5%) T3, T23, T27, T35, T63, T71

Perl 5 (7.0%) T5, T7, T14, T17, T23

Rust 4 (5.6%) T3, T27, T30, T53

Swift 3 (4.2%) T27, T32, T47

TypeScript 3 (4.2%) T54, T66, T70

React 3 (4.2%) T4, T32, T66

XML 2 (2.8%) T7, T60

C# 2 (2.8%) T9, T48

Elixir 1 (1.3%) T39

Escala 1 (1.3%) T25

Rails 1 (1.3%) T32

Django 1 (1.3%) T32

Flashk 1 (1.3%) T32

Laravel 1 (1.3%) T32

Scala 1 (1.3%) T61

Clojure 1 (1.3%) T64

Erlang 1 (1.3%) T27

24

7
9
9

10
12

13
19

21
22

25

Messaging
Configuration managment

IT Automation & Orchestration
Log analytics
Virtualization

Alerting/Event Management
Data analytics

DB
Collecting

Visualization

Figure 7: Tools required technologies

50

30

44

57

41

26
31 34

17

MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8 MC9

Figure 8: Challenges addressed

tion. Clearly, more assumptions required restrict the freedom of selection, as
they could be not easily satisfiable. For instance, tracing by Monit (T62) sup-
ports only Java-based applications, or Centreon that officially supports only
MariaDB; these can both be quite limiting for microservice-based systems. The
full list is in Table 7.

2.6.5 Addressed challenges

We analyze if and how the tools address the list of challenges as identified
by Waseem et al. [94]. The challenges are summarized in Section 2.2.

The most important challenges addressed by the tools, as shown in Fig-
ure 8, are related to the ability of effectively monitor performance (MC4), to
the collection of monitoring metrics and logs from containers (MC1), to deal
with complexity (MC3) and to analyze data (MC5). Some of the reasons for
the presence of the above challenges are explained by some interviewees in the
work by Waseem et al. [94], and are related to (i) the communication between

25

Table 7: Assumptions made by tools

Assumption #Tools
(Per-
centage)

Tools

Require agent 13
(18.3%)

T5, T8, T12, T21, T28, T31, T62, T63, T65, T67, T68, T70, T71

Require specific OS 11
(15.5%)

T16, T17, T19, T23, T30, T31, T35, T38, T47, T56, T59

Most of the systems
are supported

7 (9.9%) T3, T22, T26, T29, T32, T34, T36

Require instrumen-
tation

6 (8.5%) T2, T4, T27, T65, T70, T71

Require connection
to backend

5 (7.0%) T67, T68, T69, T70, T71

Run as SaaS 5 (7.0%) T33, T34, T37, T62, T63

Require Docker 4 (5.6%) T51, T55, T56, T58

Require JVM 3 (4.2%) T25, T52, T65

Require NodeJS 2 (2.8%) T45, T54

Require Open-
Tracing version
compatibility

1 (1.4%) T58

Tracing only sup-
ports Java-based ap-
plications

1 (1.4%) T62

Require external
data storage

1 (1.4%) T61

Haystack client java
needs OpenTracing
version

1 (1.4%) T58

Cross-platform 1 (1.4%) T1

Require code re-
building

1 (1.4%) T54

Maintained in your
own system

1 (1.4%) T53

Require Swift bina-
ries v4.1.2

1 (1.4%) T47

Require plugin 1 (1.4%) T24

Require specific DB 1 (1.4%) T13

Require visualizer 1 (1.4%) T11

Require script not
blocked by browser

1 (1.4%) T69

26

hundreds of microservices (hence referring to complexity of MSA), (ii) absence
of a standardized infrastructure for run-time monitoring (hindering collection
of data), (iii) different languages, databases, and frameworks for developing
microservices, and (iv) logs and dataflows in different format.

Indeed, we found that several of the analysed tools focus on solutions to
(i) efficiently extracting information (useful for service administrators, man-
agers and stakeholders), (ii) dealing with several metrics (e.g., request duration,
errors, availability time, database metrics, among others), with performance
monitoring (MC4, 57 tools), and with logs (i.e., traces of events and errors),
overcoming the issue heterogeneous log formats (MC1, 50 tools). Moreover,
the solution that many tools offer is thought to scale, as many of them (MC3,
more than 44 tools) are able to work with complex (i.e., with many service and
microservice components) architectures.

Other challenges, such as monitoring of application running inside containers
are only partially addressed, by half of the tools (MC8, 34 tools), or still mostly
neglected (e.g., maintenance of the monitoring infrastructure, MC9, 17 tools);
thus suggesting future directions for researchers and tool vendors – a deeper
discussion will follow in Section 2.9.

2.7 Results – What is monitored
In this section, we report information about what is monitored by the ana-

lyzed tools. The monitoring tools collect and monitor a wide range of metrics,
both at the system-level and user-level. Therefore, we focus on two types of
monitoring metrics: user-oriented metrics and system-oriented metrics. We
also extract information regarding the target quality attribute, support for dis-
tributed tracing, and failure/events logging for each tool.

2.7.1 User-oriented metrics

In the context of this study, a user-oriented metric is a high-level metric
whose values might influence how users of the system experience or perceive the
value of the system. Examples of user-oriented metrics include: response time,
latency, number of failures/errors, SLA violations, number of network requests,
etc.

In terms of user metrics, several tools, 26 of 71 (36.62%) support User-
defined (e.g., custom events, custom application metrics, etc.) and Failure
metrics (e.g., error rates, SLA metrics - number of errors/exceptions/failures,
etc.). Timing (e.g., response time, latency, etc.) and Networking (e.g., request
rate/error/duration, average in/outbound packets, average packet loss, etc.) re-
lated metrics are also popular user-oriented metrics among the tools, which we
found in 24 of 71 (33.80%) and 23 of 71 (32.39%) tools, respectively.

For instance, during the data extraction phase, we observed that Sumo Logic
(T70) collects Timing, Networking, Failure, UX, and User-defined metrics. Sim-
ilar to Sumo Logic, Elastic search (T23) collects Failure and Networking

27

Table 8: The user-oriented metrics supported by the monitoring tools.

Metric #Tools
(Percent-
age)

Tools

User-defined 26 (36.62%) T1, T7, T11, T12, T13, T15, T20, T21, T26, T27,
T31, T39, T40, T44, T45, T47, T60, T61, T62, T63,
T64, T66, T67, T68, T69, T71

Failure 26 (36.62%) T1, T6, T8, T10, T14, T15, T17, T19, T23, T24,
T26, T29, T30, T32, T33, T35, T40, T44, T45, T59,
T60, T63, T67, T68, T70, T71

Timing 24 (33.80%) T1, T10, T14, T15, T19, T22, T24, T29, T30, T32,
T33, T39, T40, T43, T44, T45, T60, T62, T63, T64,
T67, T68, T70, T71

Networking 23 (32.39%) T1, T4, T10, T13, T17, T19, T22, T23, T24, T30,
T32, T33, T40, T43, T44, T45, T62, T63, T67, T68,
T69, T70, T71

Health 10 (14.08%) T5, T10, T14, T23, T26, T30, T32, T35, T36, T63

UX 8 (11.27%) T32, T35, T60, T62, T63, T69, T70, T71

User-sessions 8 (11.27%) T15, T17, T23, T24, T29, T30, T62, T63

DB 4 (5.63%) T13, T22, T24, T33

Memory 4 (5.63%) T29, T33, T44, T62

Application-level
metrics

3 (4.23%) T63, T69, T71

Power 2 (2.82%) T13, T63

CPU 2 (2.82%) T33, T44

IO 1 (1.41%) T10

Success 1 (1.41%) T43

Profiling 1 (1.41%) T62

Container-lifecycle 1 (1.41%) T62

N/A 20 (28.17%) T16, T18, T28, T34, T37, T38, T41, T42, T46, T48,
T49, T50, T51, T52, T53, T54, T55, T56, T57, T58

28

metrics. Besides, Elastic Search also covers Health and User-sessions metrics.

2.7.2 System-oriented metrics

In the context of this study, a system-oriented metric is a low-level metric
whose values are of interest to DevOps engineers. Those metrics are generally
defined at a lower level of granularity (e.g., container, OS, physical node) than
user-oriented metrics. Examples of system-oriented metrics include: CPU us-
age, memory usage, available resources at the OS level, number of database
connections, etc.

In terms of system metrics, Networking, Memory, and CPU are the most
dominant metrics in more than 70% of the tools. As shown in Table 9, 55 out
of 71 tools (77.46%) collect Networking metrics (e.g., RX/TX network traffic,
average in/outbound packets, average packet loss, etc.), followed by Memory
(e.g., memory usage, system load, swap, etc.) – 53 of 71 tools (74.65%) – and
CPU (e.g., CPU usage, host/process/user CPU, thread count, etc.) – 50 of 71
tools (70.42%).

For instance, we observed that Sumo Logic (T70) collects CPU, Memory,
Networking, IO, DB, Failure, Timing system-oriented metrics. Similarly, Elastic
search (T23) also focuses on CPU, Memory, Networking, IO, DB, and Timing
metrics. Besides, Elastic search collects metrics related to Health and Failure
(e.g., number of errors/exceptions/failures, etc.).

It is worth noting that system-oriented metrics are much better supported
than user-oriented metrics, indirectly denoting that a system-level perspective
(in terms, for instance, of resource consumption), which can be useful for capac-
ity and deployment planning is deemed a more important goal than application-
level and user-oriented metrics such as response time or latency.

2.7.3 Distributed tracing

In this section, we report our insights regarding the support for distributed
tracing of the tools.

As shown in Table 10, the majority of the tools, 41 of 71 (57.75%), do not
support distributed tracing, while 30 tools (42.25%) provide dedicated support
for distributed tracing.

These 41 tools include Splunk (T60) which does not have any support for
distributed tracing. Whereas, there are tools, such as Jaeger (T4) or Dynatrace
(T71) which provide support for distributed tracing requests.

2.7.4 Failures/events logging

This parameter investigates whether the tools support failures/events log-
ging or not. As shown in Table 11, the majority of the tools, 54 of 71 (76.06%),
support failures/events logging, while the remaining 17 tools (23.94%) do not
support it.

29

Table 9: System-oriented metrics supported by the tools.

Metric #Tools
(Per-
centage)

Tools

Networking 55
(77.46%)

T1, T2, T3, T5, T6, T7, T8, T10, T11, T12, T13, T14,
T15, T17, T18, T19, T20, T21, T22, T23, T24, T25, T26,
T28, T29, T30, T32, T33, T34, T35, T36, T37, T38, T39,
T40, T44, T45, T51, T52, T53, T54, T55, T56, T58, T59,
T60, T62, T63, T64, T65, T67, T68, T69, T70, T71

Memory 53
(74.65%)

T1, T3, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14,
T15, T16, T17, T18, T19, T20, T21, T22, T23, T24, T25,
T26, T28, T29, T30, T31, T33, T35, T37, T38, T39, T40,
T41, T44, T45, T46, T51, T52, T53, T54, T55, T56, T59,
T60, T62, T63, T64, T65, T67, T68, T70

CPU 50
(70.42%)

T1, T3, T5, T6, T7, T8, T9, T10, T12, T13, T14, T15,
T16, T17, T18, T19, T20, T21, T23, T24, T25, T26, T28,
T29, T30, T31, T33, T35, T37, T38, T39, T40, T41, T42,
T44, T45, T46, T51, T52, T53, T59, T60, T62, T63, T64,
T65, T67, T68, T70, T71

IO 44
(61.97%)

T1, T3, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14,
T15, T16, T17, T18, T19, T20, T21, T22, T23, T25, T26,
T28, T29, T30, T31, T33, T35, T37, T38, T39, T40, T44,
T45, T52, T59, T60, T62, T63, T64, T67, T70, T71

Timing 39
(54.93%)

T1, T2, T3, T5, T7, T10, T12, T14, T17, T19, T20, T22,
T23, T24, T25, T26, T31, T32, T33, T34, T35, T36, T39,
T40, T41, T42, T45, T46, T51, T52, T54, T55, T60, T62,
T64, T65, T67, T69, T70

DB 21
(29.58%)

T1, T3, T5, T12, T14, T17, T22, T23, T24, T33, T39, T40,
T54, T55, T56, T63, T65, T67, T68, T70, T71

User-defined 17
(23.94%)

T3, T27, T29, T33, T34, T40, T44, T46, T47, T60, T61,
T62, T63, T64, T66, T67, T68

Health 16
(22.54%)

T1, T3, T5, T6, T10, T14, T22, T23, T31, T33, T35, T40,
T46, T53, T58, T71

Failure 16
(22.54%)

T2, T9, T25, T33, T34, T35, T36, T39, T42, T55, T58,
T60, T63, T65, T69, T70

Temperature 6 (8.45%) T13, T17, T19, T20, T21, T54

Container-lifecycle 5 (7.04%) T35, T51, T54, T56, T58

Service 4 (5.63%) T3, T31, T54, T68

Power 4 (5.63%) T1, T6, T10, T59

Application-level
metrics

4 (5.63%) T24, T41, T52, T55

Load 1 (1.41%) T26

Process 1 (1.41%) T71

N/A 6 (8.45%) T4, T43, T48, T49, T50, T57

30

Table 10: Support for distributed tracing

Request
tracing

#Tools (Per-
centage)

Tools

Yes 30 (42.25%) T1, T2, T3, T4, T5, T8, T22, T23, T25, T27, T28, T29, T30,
T32, T34, T35, T41, T44, T45, T48, T54, T55, T58, T62,
T63, T65, T67, T68, T70, T71

No 41 (57.75%) T6, T7, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18,
T19, T20, T21, T24, T26, T31, T33, T36, T37, T38, T39,
T40, T42, T43, T46, T47, T49, T50, T51, T52, T53, T56,
T57, T59, T60, T61, T64, T66, T69

Table 11: Support for failure/events logging

Failure/event
logging

#Tools (Per-
centage)

Tools

Yes 54 (76.06%) T1, T2, T3, T4, T5, T6, T8, T9, T10, T11, T12, T13, T14,
T15, T16, T17, T18, T19, T20, T21, T23, T24, T25, T26,
T28, T29, T30, T31, T32, T33, T34, T35, T36, T38, T39,
T40, T41, T44, T45, T51, T53, T58, T59, T60, T62, T63,
T64, T65, T66, T67, T68, T69, T70, T71

No 17 (23.94%) T7, T22, T27, T37, T42, T43, T46, T47, T48, T49, T50, T52,
T54, T55, T56, T57, T61

Among these 54 tools, for instance, Sumo Logic (T70) or Elastic search
(T23), provide support for events/failures logging. However, there are some
tools that do not provide support for collecting such logs. OpenTelemetry (T27)
is one of the 17 tools (23.94%) that does not have support for failures/events
logging.

2.7.5 Targeted quality attribute

This parameter is about the quality attributes explicitly targeted by the
monitoring tools. As shown in Table 12, the vast majority of the tools – 63/71
(88.73%) – focus on Performance as their targeted quality attribute, followed
by Reliability (53/71, 74.65%). This means that the studied tools tend to focus
more on the Performance and Reliability quality aspects compared to other
quality attributes. This result is expected since the performance and reliability
of microservice-based systems directly impact the user experience, potentially
impacting the most user acceptance (and the success of the system as a whole).
We also observed that Energy (3/71, 4.23%), Maintainability (1/71, 1.41%), and
Compatibility (1/71, 1.41%) are the least frequently targeted quality attributes.

31

Four monitoring tools (5.63%) are targeting User-defined metrics, i.e., they
allow system maintainers to define their our quality-related metrics and provide
means to instrument the application in order to suitably log and aggregate
such custom metrics; interestingly, two of those monitoring tools (i.e., T27 and
T47) support exclusively User-defined metrics, meaning that they do not come
with predefined quality metrics that system maintainers can use out of the box.
Finally, two monitoring tools (2/71, 2.81%) do not explicitly target any quality
attribute (not even those defined by system maintainers); in both cases the
monitoring tool provides features for collecting and filtering system logs, while
delegating to other third-party tools the aggregation of the collected logs into
suitable quality metrics.

Table 12: The quality attributes targeted by the monitoring tools.

Quality at-
tribute

#Tools
(Percent-
age)

Tools

Performance 63
(88.73%)

T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12,
T13, T14, T15, T16, T17, T18, T19, T20, T21, T22,
T23, T24, T25, T26, T28, T29, T30, T31, T32, T33,
T34, T35, T36, T37, T39, T40, T41, T43, T44, T45,
T46, T48, T51, T52, T54, T55, T56, T58, T59, T60,
T61, T62, T63, T64, T65, T66, T67, T68, T69, T70,
T71

Reliability 53
(74.65%)

T1, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13,
T14, T15, T17, T18, T19, T22, T23, T24, T25, T26,
T28, T29, T30, T31, T33, T34, T36, T37, T38, T39,
T40, T41, T42, T43, T46, T48, T51, T52, T53, T56,
T57, T58, T59, T60, T61, T62, T63, T67, T68, T70,
T71

Security 15
(21.13%)

T5, T6, T14, T19, T35, T38, T40, T51, T60, T61,
T66, T67, T69, T70, T71

Usability 7 (9.86%) T5, T60, T62, T63, T67, T69, T70

User-defined 4 (5.63%) T27, T47, T64, T66

Energy 3 (4.23%) T1, T13, T30

None 2 (2.81%) T49, T50

Maintainability 1 (1.41%) T1

Compatibility 1 (1.41%) T5

For instance, the targeted quality attributes for the Sumo Logic tool (T70)
are Performance, Reliability, Security, and Usability, whereas, Elastic search
(T23) focuses on Performance and Reliability.

32

For the targeted quality attributes, it would be interesting also to note down
further insights on their co-existence with other quality attributes. From the
collected data, we noticed in 11 cases, 11 of 71 tools, cover Performance, Re-
liability, and Security together. 49, 14, and 12 tools cover the combination
of Performance-Reliability, Performance-Security, and Security-Reliability, re-
spectively, as their targeted quality attributes with/without other less frequent
quality attributes. This information related to the combination of the quality
attributes is presented in Table 13. It is finally interesting to note that moni-
toring Energy is scarcely supported (3/71), although power consumption is one
of the few attributes directly related to cost. We expect an increased support in
the near future. Security will also likely see an increasing support, considering
the pressing need for cyber-security in todays’ systems.

Table 13: Co-occurring quality attributes targeted by the monitoring tools.

Combination #Tools (Percent-
age)

Tools

Performance - Reliability 49 (69.01%) T1, T3, T4, T5, T6, T7,
T8, T9, T10, T11, T12,
T13, T14, T15, T17, T18,
T19, T22, T23, T24, T25,
T26, T28, T29, T30, T31,
T33, T34, T36, T37, T39,
T40, T41, T43, T46, T48,
T51, T52, T56, T58, T59,
T60, T61, T62, T63, T67,
T68, T70, T71

Performance - Security 14 (19.72%) T5, T6, T14, T19, T35,
T40, T51, T60, T61, T66,
T67, T69, T70, T71

Security - Reliability 12 (16.90%) T5, T6, T14, T19, T38,
T40, T51, T60, T61, T67,
T70, T71

Performance - Reliability
- Security

11 (15.49%) T5, T6, T14, T19, T40,
T51, T60, T61, T67, T70,
T71

2.8 Results – How is monitoring done
In this section, we discuss how the monitoring is done by the tools. This

includes the instrumentation usable with the tools, the monitoring patterns and
practices we observed, the granularity on which data is gathered and whether
there is an integration with testing.

33

Table 14: Monitoring Patterns. P1: Health Check API, P2: Distributed Trac-
ing, P3: Application Metrics, P4: Audit Logging, P5: Exception Tracking, P6:
Log Aggregation.

Monitoring
Pattern

#Tools (Per-
centage)

Tools

P1 22 (30.98%) T42, T43, T46, T53, T55, T56,
T5, T6, T33, T10, T11, T19,
T29, T35, T58, T31, T62, T39,
T45, T51, T52, T54

P2 17 (23.94%) T2, T4, T50, T5, T8, T23, T25,
T32, T27, T44, T31, T62, T39,
T45, T51, T54, T65

P3 33 (46.47%) T1, T7, T24, T47, T57, T59, T5,
T6, T33, T8, T10, T13, T15,
T36, T22, T23, T25, T32, T26,
T38, T64, T27, T44, T29, T35,
T58, T31, T62, T39, T45, T51,
T52, T65

P4 14 (19.71%) T23, T5, T6, T33, T8, T13, T15,
T36, T26, T38, T64, T31, T62,
T37

P5 12 (16.90%) T5, T23, T26, T38, T64, T37,
T39, T45, T51, T52, T65, T66

P6 28 (39.43%) T14, T18, T20 ,T21, T41, T48,
T49, T61, T5, T6, T33, T8, T10,
T11, T19, T13, T15, T36, T22,
T23, T26, T38, T64, T27, T44,
T31, T62, T66

All 11 (15.49%) T3, T28, T30, T34, T40, T60,
T63, T67, T68, T70, T71

N/A 5 (7.04%) T9, T12, T16 ,T17, T69

2.8.1 Instrumentation

We report our insights regarding the instrumentation used by the monitoring
tools in this section. The possible forms of instrumentation are platform, library
or no instrumentation. A platform runs besides the monitored application and
forwards monitoring data to a back-end for storage and analysis. This data can
be either gathered by the platform itself, through automatic instrumentation or
by instrumentation libraries. These libraries are programming language specific
and enable the manual instrumentation of applications. Platforms and libraries
can either be vendor-provided or third-party. No instrumentation means that
there is neither a platform nor a library. Instead monitoring data is gathered
through manual instrumentation and manual forwarding to the back-end via

34

communication protocols, e.g. a REST-API.
Table 15 shows that the majority of tools, 59 (83.1%), provide a vendor-

specific platform. About half of the tools, 37 (52.11%), provide a vendor-specific
library and 32 tools provide a vendor-specific platform and library. Third-party
platforms are usable with 36 (50.7%) and third-party libraries with 36 (50.7%) of
the tools. Only 3 (4.23%) tools provide no instrumentation platform or library or
can be used with third-party platforms or libraries. For instance, OpenTelemtry
(T27) provides platforms and libraries, supports forwarding data to third-party
platforms and back-ends and can ingest data from third-party platforms or
libraries.

Table 15: Instrumentation mechanisms provided by the tools

Instrumentation #Tools
(Per-
centage)

Tools

Vendor-provided
platform

59 (83.1%) T1-T18, T21, T23-T41, T43-
T44, T46, T50-T56, T58-T60,
T62-T63, T65-T68, T70-T71

Vendor-provided

library 37
(52.11%)

T1-T3, T6, T15, T17, T22-
T29, T32-T35, T37, T39-T41,
T44-T48, T53-T54, T60, T63,
T65, T67-T71

Third-party

platform 36 (50.7%) T1-T5, T11-T12, T14-T16,
T19-T23, T26-T27, T29, T31-
T32, T34-T35, T37, T39, T41,
T44, T58, T60-T64, T66-T67,
T70-T71

Third-party library 36 (50.7%) T1-T5, T8, T11-T12, T14-T16,
T19-T23, T26-T27, T29, T31-
T32, T34-T35, T37, T39, T41,
T44, T58, T60-T64, T67, T70-
T71

No instrumentation 3 (4.23%) T42, T49, T57

2.8.2 Monitoring patterns and practices

Table 14 reports the tools as per different monitoring patterns. The monitor-
ing patterns of the tools are classified into 6 categories. P1: Health Check API
Pattern, P2: Distributed Tracing Pattern, P3: Application Metrics Pattern, P4:
Audit Logging Pattern, P5: Exception Tracking Pattern, P6: Log Aggregation
Pattern. For each monitoring pattern, there are specific monitoring practices.

35

For example, if a tool has only monitoring pattern P1, then it only supports
health check API and sometimes event logger. In case of P3, there are tools
like T47 that supports event logger and T57 that supports signaling theory,
stigmergy, systems thinking, semiotics, and social cognition practices. Out of
71, only 11 tools follow all the six monitoring patterns. The overview of the
classification is in Table 14. We can see that the analyzed tools support most
of the available patterns such as: Application metrics (P3), health check API
(P1), log aggregation (P6), distributed tracking (P2).

Most of the tools provide “log management” as monitoring patterns. How-
ever, there exists no tools which only supports P4, P5. They are always com-
bined with other monitoring patterns. For 6 tools, no information is available,
or it is hard to gather the information.

2.8.3 Monitoring Granularity

Table 16: Monitoring Granularity mapping tools to every granularity level.

Monitoring
Granular-
ity

#Tools
(Percent-
age)

Tools

Application 37
(52.11%)

T1, T3, T5, T6, T8, T13, T14, T15, T20, T21, T23,
T24, T27, T28, T29, T30, T31, T32, T33, T34, T35,
T36, T37, T38, T40, T60, T61, T62, T63, T64, T65,
T66, T67, T68, T69, T70, T71

Microservice 62
(87.32%)

T1, T2, T3, T4, T5, T6, T7, T8, T10, T13, T14, T15,
T20, T21, T22, T23, T24, T25, T26, T27, T28, T29,
T30, T31, T32, T33, T34, T35, T36, T37, T38, T40,
T41, T42, T43, T44, T45, T46, T47, T48, T49, T50,
T51, T52, T53, T54, T55, T56, T57, T58, T59, T60,
T61, T62, T63, T64, T65, T66, T67, T68, T70, T71

VM/Container 42
(59.15%)

T1, T3, T5, T6, T8, T10, T13, T14, T15, T17, T18,
T19, T20, T21, T22, T23, T24, T25, T28, T29, T30,
T31, T33, T34, T35, T36, T37, T38, T39, T40, T44,
T60, T61, T62, T63, T64, T65, T66, T67, T68, T70,
T71

Infrastructure 40
(56.33%)

T1, T3, T5, T6, T7, T8, T10, T13, T14, T15, T16,
T17, T18, T19, T20, T21, T23, T25, T26, T28, T29,
T30, T31, T33, T34, T35, T36, T37, T38, T40, T44,
T60, T61, T62, T63, T64, T67, T68, T70, T71

N/A 3 (4.23%) T9, T11, T12

Within the monitoring granularity dimension, we investigated on which lev-
els the tools operate. These levels consist of the complete Microservice-based
application, individual Microservices, a VM or container, and the infrastruc-

36

Table 17: Monitoring Granularity showing which tools support which level com-
bination.

Combinations of
Monitoring Granu-
larity

#Tools (Per-
centage)

Tools

Application 1 (1.40%) T69

Application, Microser-
vice

2 (2.81%) T27, T32

Application, Microser-
vice, VM/Container

3 (4.23%) T24, T65, T66

Application, Microser-
vice, VM/Container,
Infrastructure

31 (43.66%) T1, T3, T5, T6, T8, T13, T14, T15, T20, T21, T23,
T28, T29, T30, T31, T33, T34, T35, T36, T37, T38,
T40, T60, T61, T62, T63, T64, T67, T68, T70, T71

Microservice 20 (28.17%) T2, T4, T41, T42, T43, T45, T46, T47, T48, T49, T50,
T51, T52, T53, T54, T55, T56, T57, T58, T59

Microservice, Infras-
tructure

2 (2.82%) T7, T26

Microservice,
VM/Container

1 (1.40%) T22

Microservice,VM/Container,
Infrastructure

3 (4.23%) T10, T25, T44

Infrastructure 1 (1.40%) T16

VM/Container 1 (1.40%) T39

VM/Container, Infras-
tructure

3 (4.23%) T17, T18, T19

N/A 3 (4.23%) T9, T11, T12

ture. The mapping of tools to the levels is displayed in Table 16. While the
application, VM/container, and infrastructure levels are supported by over half
of the tools, 62 tools (87.32%) target the Microservice level. In addition, Table
17 contains all level combinations which are supported by at least one tool, and
the corresponding tools. Here, tools that work at only one among the appli-
cation, infrastructure level or VM/Container levels are 1 per each level (T69,
Akamai mPulse, T16, NSCP, and T39, AppSignal, respectively) while there are
20 tools (28.17%) supporting only Microservices. The most frequent combi-
nation with 31 tools (42.66%) covers all four levels (application, Microservice,
VM/container, and infrastructure level).

As an example, these 31 tools include Zenoss which collects metrics and
events of the infrastructure, VM/container, and individual service level. By
combining these information and providing overviews for complete applications,

37

Zenoss is one of the tools that operate on all levels.

2.8.4 Integration with Testing

Table 18: Integration with Testing.

Integration
with Test-
ing?

#Tools
(Percent-
age)

Tools

Yes 11 (15.5%) T24, T29, T56, T58, T59,
T60, T62, T63, T64, T67,
T69

No 60 (84.5%) T1, T2, T3, T4, T5, T6, T7,
T8, T9, T10, T11, T12, T13,
T14, T15, T16, T17, T18, T19,
T20, T21, T22, T23, T25, T26,
T27, T28, T30, T31, T32, T33,
T34, T35, T36, T37, T38, T39,
T40, T41, T42, T43, T44, T45,
T46, T47, T48, T49, T50, T51,
T52, T53, T54, T55, T57, T61,
T65, T66, T68, T70, T71

Regarding testing, we looked if the monitoring tools support testing in some
way. As shown in Table 18, only 11 tools (15.5%) provide such support. As a
consequence, a majority of the tools do not support tests. When collecting data
about integration with testing, we observed that most of them do not inherently
support testing in their standard version but rely on plugins for this purpose.
Additionally, we noted that they primarily focus on non-functional testing (e.g.,
T29, T59, T62, T63, and T69), such as performance testing. On the other
hand, other tools offer support for functional testing (e.g., T24, T44, and T60),
including regression testing. However, they usually require to manually write
test cases. For instance, DataDog and Sematext, provide the possibility to define
synthetic tests. When these tests are executed, user interactions are simulated
by performing synthetic requests and actions on the applications’ endpoints.
Integration with testing is a possible future challenge, a deeper discussion follows
in the next section.

2.9 Discussion
In this section, we put in context the results emerging from our analysis

by presenting (i) the main findings and guidance for DevOps engineers (Sec-
tion 2.9.1), (ii) open challenges to be addressed by both researchers and tool
vendors (Section 2.9.2), and (iii) cross-cutting findings emerging from our or-
thogonal analysis (Section 2.9.3).

38

Table 19: Main findings of this study

Main characteristics of the monitoring tools (RQ1) Section
About half of the tools (34/71) have been released after 2014, in parallel with the boost of microservices
and DevOps. Most of tools are actively maintained (77% of the tools have a last release in 2021 or
2022). Proprietary tools tend to have a longer lifetime.

2.5

Most of the tools (58%) target high-level distributed systems, while the rest, especially newer ones, are
specifically focused on web service technologies (21%) and for microservice-based systems (21%).
Most of the tools (48/71) offer their own visualization and reporting facilities besides monitoring; a
significant share of the tools offer alerting (29/71) and data analysis (26/71) capabilities. More advanced
features are available in a few tools, such as: custom data search/analysis (16/71), dedicated APIs for
third-party components (10/71), and optimization features (4/71).

2.6.1

The most widely supported data export formats are JSON (49/71) and CSV (25/71). Most of the
tools (54/71) offer their own visualization features, such as charts, tables, and dashboards. 2.6.2

The most used programming languages for developing monitoring tools are: Go (27/71), Java
(25/71), Python (22/71), and JavaScript (20/71); a non-negligible number of tools (27/71) use mul-
tiple languages.
The most used technologies are related to visualization (39%), data collection tools (35%), and
databases (30%).
Specific OS, technologies (e.g., Docker containers, JVM, Node.js, a SaaS), or libraries are explicitly
stated as requirements in no more than 20% of the tools.

2.6.3

The challenges [94] addressed by more than 50% of the tools are those related to performance (MC4),
metrics and logs (MC1), complexity (MC3), and data analysis (MC5). 2.6.5

Type of information collected by the tools (RQ2)
The user-oriented metrics that are collected the most are custom/user-defined (26/71) or related to
system failures (26/71), timing (24/71), and networking (23/71).
The system-oriented metrics that are collected the most are related to networking (55/71), memory
usage (53/71), and CPU load (50/71).
The majority of the tools (41/71) do not support distributed tracing, while 30/71 tools provide
dedicated support for distributed tracing.
The majority of the tools (54/71 support failures/events logging, while the remaining 17 tools do
not support it.
The most targeted quality attributes are performance (63/71), reliability (53/71), and security
(15/71). Only 5 tools target user-defined quality attributes and only 3 tools target energy consumption.

2.7

Realization of the monitoring infrastructure (RQ3)
Almost all monitoring tools require an instrumentation step (68/71). Among them, the majority of
the tools provide a vendor-specific platform (59/68), followed by a vendor-provided library (37/68) and
either a third-party platform (36/71) or third-party library (36/71).
The most frequently-used monitoring patterns are: Application Metrics (44/71), Log Aggregation
(39/71), and Health Check API (33/71). Out of the 71 monitoring tools, 11 tools use all 6 monitoring
patterns we consider in this study.
The vast majority of the considered tools have a monitoring granularity defined at the microservice
level (62/71), followed by the VM/container level (42/71), infrastructure level (40/71), and finally
application level (37/71).
The majority of the analyzed tools do not have any integration with testing activities (60/71). The
remaining 11 tools deal with testing in some way, e.g., by supporting canary releases, synthesis of test
cases, or by providing dedicated testing environments for end-to-end testing of the system.

2.8

2.9.1 Main findings and guidance for DevOps engineers

Table 19 summarizes the main findings of our study, grouped by research
question, together with high-level observations for helping DevOps engineers in
selecting a monitoring tool for their own microservice-based system. The details
of the specific features of each tool are provided in the referred sections in this
article and in the replication package.
The ecosystem. The main takeaway message of this study is that the
ecosystem of monitoring tools for microservice-based systems in the context of
DevOps is extremely active, as there has been an important effort to de-
velop and maintain tools in the last ten years. In this effort, web services and

39

Microservices contributed to raising the market of monitoring tools initially de-
voted to distributed systems in general, favoring an increase in the number of
tools (since around 2009 with a peak in 2014) tailored for service-based software.
Nevertheless, such an ecosystem is also extremely fragmented: each of the ana-
lyzed monitoring tools has its own characteristics and can fit DevOps engineers
with very different needs, e.g., in terms of targeted quality attributes (e.g.,
performance, security), monitored metrics (e.g., CPU usage, network latency,
energy consumption), applied monitoring patterns (e.g., health check API, log
aggregation), etc. So, it is more important than ever for DevOps engineers to
make informed decisions when choosing the right tool for monitoring their own
system.

We suggest DevOps engineers to use our data extraction form (see
Table 3) as a checklist for guiding their decision process about the moni-
toring tool to use in their own system. Such a checklist can act as a compass
when reasoning on the monitoring tool to use (and the implied trade-offs among
the various dimensions of our data extraction form). To date, there is a vast
choice for practitioners, with tools offering several features besides the basic
data-collection facilities. While most tools offer some visualization and metrics
reporting facility, only a few have advanced features, such as exposure of APIs
for integration with other systems, customizable data searches, and analysis or
optimization features. These are features that, if needed, will significantly re-
strict the space of possible choices, and they should be weighed against other
characteristics, such as collected metrics, required technologies, and performance
overhead. In this context, we suggest DevOps engineers use our data extraction
form incrementally, i.e., to consider the parameters based on the importance of
the tool’s features for the project at hand. Specifically, we identified three lev-
els of parameters: the top level contains first-class features representing tier-1
parameters for the DevOps team, the second level is about tier-2 parameters,
i.e., those parameters whose values are still required by the DevOps team, but
they are not blocking, and finally we have the third level containing optional
parameters, which represent those parameters whose values are desiderata for
the DevOps team. Based on the collected data and our experience in both
industrial and academic projects, we propose the following concrete levels for
choosing a monitoring tool (for each parameter we also provide concrete ex-
amples of questions DevOps engineers can ask themselves during the decision
process):

• Tier-1 parameters:

– Target – What needs to be monitored, individual microservices, the
system as a whole, etc.?

– Features/motivation – Why does the DevOps team need to monitor
the system (e.g., for visualization, reporting, optimization, etc.)?

– Assumptions – Does the system/project satisfy all assumptions of the
tool (a specific OS, Docker, specific DB technology)?

40

– Integration/Dependency tools – Does the team have the capacity to
bring up the technologies on which the tool depends (e.g., Apache
Kafka)?

– Monitoring metrics (user-oriented) – Which high-level metrics does
the DevOps team need to collect from the running system (e.g., health,
UX, user sessions)?

– Monitoring metrics (system-oriented) – Which system-level metrics
does the DevOps team need to collect from the running system (e.g.,
network requests, IO operations, CPU usage)?

– Targeted quality attribute(s) – Is the DevOps team interested on
security-related aspects of the system? What about energy efficiency?
What about performance?

• Tier-2 parameters:

– Open Source – Does the DevOps team need to customize/modify the
monitoring tool?

– Visualization – How are the monitored metrics visualized? Is a graph-
ical visualization needed? If yes, which one?

– Requests tracing – Is it needed to collect information about all (in-
ternal) API calls made when executing a usage scenario?

– Events/Failures logging – Does the DevOps team need precise infor-
mation about specific events and failures within the system?

– Instrumentation – Are there resources, skills, and time available for
instrumenting the monitored services?

• Optional parameters:

– Provider – Does the DevOps team already have a business relationship
with the tool provider? Does the DevOps team need support from the
tool provider?

– Available format(s) to export data – Is it required to analyze the
monitoring data externally? If yes, are JSON or CSV (or other) file
formats acceptable?

– Addressed Challenges – Are there any orthogonal relevant aspects
about the tool and the system that should be taken into consideration

– Monitoring granularity – Does the DevOps team need to monitor the
application-level metrics, individual microservices, the infrastructure,
etc.?

– Monitoring patterns – Which monitoring patterns is the DevOps team
familiar with (e.g., health check API, audit logging, exception track-
ing)?

– Monitoring practices – Which monitoring practices is the DevOps
team familiar with (e.g., deployment logging, log aggregation, etc.)?

41

– Programming language(s) – Does the DevOps team need to customize
the monitoring tool? If yes, which technologies/programming lan-
guages are they familiar with?

– Integration with testing – Does the DevOps team have an already-in-
place testing infrastructure that needs to be integrated with monitoring
data?

The above-mentioned levels can be used as follows. Tier-1 parameters are
defined a priori by DevOps engineers and guide the first round of filtering of
available monitoring tools; the line of reasoning is that tools passing this first
filtering step provide a satisfactory coverage of all tier-1 parameters. This phase
also helps DevOps engineers in prioritizing what is really important for their
monitoring policies. Then, those monitoring tools that have not been filtered
out will undergo a second filtering phase based on tier-2 parameters. In this
phase, the selection is less stringent, a tool passing this phase might not provide
some features for the selected tier-2 parameters (as a rule of thumb, we might
expect that a selected tool might provide at least 80% of the required values
for tier-2 parameters). Finally, the remaining tools undergo a third selection
phase, where the tool providing the majority of the optional features is finally
selected and used in the project. The selection based on tier-2 and optional
parameters is iterative and incremental, meaning that also the requirements
for the monitoring tool can be refined and re-prioritized during the selection
itself. It is important to note that the levels proposed above are our attempt to
extract the dimensions that can possibly fit most software projects. We invite
practitioners to carefully assess if our proposed levels fit their project and, in
case they do not, to adapt them according to the project’s requirements and
technological/organizational context.
First of all, why monitoring. More in general, we advise DevOps engineers
to reason in a top-down fashion when deciding which monitoring tool to use,
starting with the why monitoring is done from an organizational point of
view. Examples of questions to be asked here include: is monitoring done for re-
ceiving real-time alerts about system malfunctions (i.e., reliability engineering)?
Is monitoring done mostly for collecting logs to be used in an external audit
(this scenario is specifically useful for highly-regulated domains like finance)? Is
a real-time dashboard showing the collected metrics needed/used? If yes, who
is using it (e.g., DevOps engineers, business analysts, customers)? The main
dimensions to be considered when taking these decisions include: tools’ fea-
tures/motivation, targeted quality attributes, user-oriented and system-oriented
metrics, and data visualization means.
Required technologies and assumptions. The choice of a tool is also
heavily related to the required technologies for the tool to run or work
properly. These latter ones are most often related to visualization (39%),
data collection tools (35%), and DB (30%). But other categories might also be
relevant; for instance, some tools require virtualization to work or have require-
ments on configuration management. This needs to be read together with the
list of assumptions, as these two dimensions can significantly restrict the pos-

42

sible choices, depending on the user’s needs. In this regard, we found that the
documentation of the tools reports the specific operating system required, the
libraries needed, or the required technologies (e.g., containers, JVM, Node.js),
or reports about requirements for the system under monitoring (e.g., only Java-
based applications are monitored). This is however explicitly reported in no
more than 20% of the tools, which does not mean that the rest of the tools is
free from assumptions – we advise the reader to check this aspect case-by-case.
Distributed tracing. In our dataset, 30 monitoring tools support distributed
tracing. This is not a surprise per se since using distributed tracing tools of
microservice-based systems is becoming the state of the art, specially in the
context of anomaly detection and performance analysis [10, 44]. However, dis-
tributed tracing tends to be more complex and resource-demanding than the
collection of individual metrics for each service [76]; this means that potentially
distributed tracing might lead to a higher overhead for the system being mon-
itored [10]. We suggest DevOps engineers to critically reflect on whether the
usage of distributed tracing will pay off for them in terms of, e.g., higher system
observability and early diagnosis in case of failures or performance regressions.
We also suggest DevOps engineers to experiment with different configurations
of the tracing tool (e.g., about the sampling frequency of the traces) in order to
ensure that the added overhead due to distributed tracing is still bearable for
the system as a whole.
Instrumentation. As shown in Table 19, almost all monitoring tools re-
quire instrumentation. This means that the source code of the microservices
being monitored must be extended or annotated with probes that suitably col-
lect the metrics, logs, and traces of interest. Instrumentation code might be
relatively simple (e.g., a basic probe) or more complex (e.g., for creating a
span in a distributed tracing tool and assigning it to the correct trace id); in
any case, it is additional code that is developed, maintained, and operated
by (potentially different) development teams. We advise DevOps engineers to
(i) choose the monitoring tool whose instrumentation fits well with
the development pace of the system (some of them, like Jaeger, Prometheus,
Zipkin, and elasticsearch support some level of automatic instrumentation
via OpenTelemetry libraries7) and (ii) allocate proper time and resources to-
wards the co-evolution of the microservices source code and their in-
strumentation code.
Community support. Finally, also the state of the community around the
chosen monitoring tool plays a strong role. Some of the analysed tools have a
lively open-source community (e.g., Prometheus, with its 49+ thousand stars on
GitHub and well-defined contribution strategy), making them good candidates
in terms of long-term support. Some of the open-source tools are also backed
by nonprofit foundations such as the Apache Software Foundation (Apache
skywalking – T3) or the Cloud Native Computing Foundation (Prometheus
– T1 and Jaeger – T4), thus guaranteeing a certain level of transparency and
support over the years. Other open-source tools are instead maintained by com-

7https://opentelemetry.io/ecosystem/integrations

43

https://opentelemetry.io/ecosystem/integrations

Figure 9: Co-occurrences between open§/closed source and programming lan-
guage

panies such as Amazon (AWS CloudWatch – T29) or Elastic (elasticsearch –
T23). Differently, other tools are either closed-source or maintained by a single
contributor, resulting in a riskier investment for DevOps engineers.

2.9.2 Open challenges for researchers and tool vendors

Open challenges for researchers. Researchers can use our classification of
the 71 monitoring tools to get a detailed overview of the characteristics of ex-
isting monitoring techniques and use it to either (i) steer their own research
towards methods and techniques that are still not covered by existing tools or
(ii) identify monitoring tools which can be reused as building blocks in
their own research on DevOps and microservices. Below we report about the
promising research gaps we noticed while analysing the collected monitoring
tools:

• Assessment of runtime overhead of monitoring microservice-based sys-
tems: the documentation of several monitoring tools claims that the tool is
highly efficient and with low overhead in terms of usage of resources (e.g.,
CPU, memory, networking, energy). However, to the best of our knowl-
edge there is no scientific study providing empirical evidence about such
overhead. Also, an independent assessment carried out by researchers (not
affiliated with any organization behind the tools) will provide objective,
trustable, and replicable insights about this particular aspect of monitor-
ing tools for microservices.

• Instrumentation bugs: as mentioned in the previous section, the in-
strumentation code in a microservice is still code developed by the team
responsible for the microservice. As such, the risk of introducing bugs
in the instrumentation code is there and (to the best of our knowledge)
it has not been studied yet. In this context it might be interesting to
(i) characterize instrumentation bugs (e.g., via a study mining software
repositories), (ii) assess the possible consequences of those bugs in terms
of the correctness of the produced metrics and traces, and their poten-
tial impact on the decision process of DevOps engineers, and (iii) propose
(semi-) automated approaches for detecting and solving instrumentation
bugs.

44

• Impact of misconfiguration of monitoring tools: this research line
is somehow in between the previous two (if we consider a misconfiguration
as a form of bug), but it is different. Monitoring tools can be configured
in several ways, As an example, the majority of the tools supported dis-
tributed tracing can sample the collected traces at different frequencies,
in an adaptive manner, based on rules, etc. All of those configurations
might potentially lead to issues with respect to the correctness of the pro-
duced metrics or unexpected runtime overhead. It might be interesting
to characterize, assess, and measure how monitoring tools behave under
different configurations and on their impact on the overall quality of the
system being monitored.

Open challenges for tool vendors. Tool maintainers can use our map of
71 monitoring tools to identify competing tools and avoiding to reinvent the
wheel. We also identified potentially-interesting gaps within the monitoring
tools landscape that tool vendors can use to anticipate the features of their next
generation monitoring tools. Below we report about those identified gaps:

• Integration with testing activities: testing and online experimenta-
tion via A/B testing procedures and canary releases are the norm today
when dealing with Cloud-based applications, so it strikes the eye that the
majority of the analyzed tools do not have any integration with testing
activities. Some tools have it, but they are a minority with respect to the
main trend. Tool vendors are invited to explore further how testing how
can be integrated in their monitoring tools.

• Target unaddressed challenges of microservice practitioners: the
Failure zone detection (MC6), the Monitoring of applications running in-
side containers (MC8), and Maintaining monitoring infrastructures (MC9)
are the least-addressed challenges in our extracted data. Features address-
ing those challenges are intrinsically promising for future releases of mon-
itoring tools since they will be addressing concrete issues and concerns
voiced by microservice practitioners, as emerged in [94].

• Monitor power consumption: only four tools monitor the power con-
sumption of the nodes where the microservices are running (T1, T6, T10,
and T59). This is a missed opportunity since the energy demand of
microservice-based systems is exploding [88] and society and policy mak-
ers are starting to build a sensibility on the energy consumption of Cloud-
based software services in general. Interestingly, none of them are provid-
ing the power consumption at the single-microservice level. This might be
an opportunity for tool vendors since in their tools they might unlock fur-
ther features, such as (i) the identification of energy hotspots in the moni-
tored system (i.e., those services that are particularly energy-hungry), (ii)
the support for root cause analysis in terms of power consumption, and
(iii) the support for microservices redeployment based on their current
power consumption and/or temperature of the processor where they are
running.

45

• Better integration with maintainability: Only one tool (i.e., T1)
targets the maintainability of the system. This is also a missed oppor-
tunity since it might be informative for DevOps engineers to have an
integrated view of the development activities and the runtime metrics of
each monitored microservice. For example, we might think about having
a dashboard showing information about pushes on the GitHub repository
containing the source code of a microservice, its CD/CI actions (e.g., auto-
mated builds and deploys), and variations of its runtime metrics like CPU
and memory usage; with such an instrument DevOps engineers might eas-
ily spot performance regressions in their managed microservices, without
needing to move from one tool to another risking to lose precious contex-
tual information.

2.9.3 Cross-cutting findings

This section describes the results of our orthogonal analysis. The goal of
the orthogonal analysis is to investigate possible co-occurrences between related
dimensions of the classification scheme (see Section 2.4.3). Specifically, firstly
we collaboratively identified 21 pairs of dimensions whose co-occurrences can
lead to potentially-interesting cross-cutting findings, then we built contingency
tables for the identified pairs of dimensions, we analyzed each one of them, and
finally synthesized the most interesting cross-cutting findings emerging from our
analysis. In the remainder of this section, we present the cross-cutting findings
emerging from 7 of the initial 21 pairs, one pair in each subsection . We do
not report the results of the other 14 pairs since they either did not exhibit
observable trends or did not lead to additional insights with respect to those of
the vertical analysis8.
Open source and programming languages. Figure 9 reports the co-
occurrences between open/closed source and programming language. In line
with the results of our vertical analysis, C (29 open-source vs 11 closed-
source), Java (26 open-source vs 11 closed-source), and Go (20 open-
source vs 6 closed-source) are the most used programming languages in
open-source projects. We suggest to junior practitioners who want to enter the
open-source monitoring tools ecosystem to specialize in at least one of the three
above-mentioned programming languages. There is slightly more balance when
considering Python-based projects (12 open-source vs 9 closed-source)
and even an opposite trend when considering Node projects (3 open-source
vs 7 closed-source). The latter result is interesting, especially due to the pop-
ularity of the Python and Javascript languages today [84]. The most recently-
created monitoring tools in our dataset are both open-source and developed in
Java. Those tools are easeagent (T55) and OpenSignals (T57) and both of
them are dedicated to monitor Java-based microservice-based systems.
Open source and addressed challenges. We crosschecked the challenges
addressed by each monitoring tool and whether it is an open-source project or

8For transparency, all contingency tables and our extracted findings are available in the
replication package, allowing for further analysis by the interested reader.

46

Figure 10: Co-occurrences between open§/closed source and addressed chal-
lenges

not. Figure 10 reports the co-occurrences. In this way, we can assess the open-
source community and evaluate how open-source tools are able to help prac-
titioners in addressing their challenges. In line with the results of the vertical
analysis, the majority of identified challenges are targeted more by open-source
tools (which are 65% of all analyzed tools in total) rather than closed-source
ones (which are only 35% of all analyzed tools in total). Nevertheless, we iden-
tified an opposite trend when looking at the maintenance of the monitoring
infrastructure challenge (MC9). Indeed, only 6 open-source tools target
MC9, as opposed to 11 closed-source tools targeting it. The 6 open-source
tools targeting MC9 are: elasticsearch (T23), AWS CloudWatch (T29), Sensu
(T31), netdata (T40), vigil (T53), Reimann (T64). We invite the open-source
community to fill this gap by providing more support for the maintenance of
the monitoring infrastructures operated via their open-source monitoring tools.
Possible action points to address this issue include (but are not limited to): (i)
providing better support in terms of co-evolution of the monitored services and
the sidecar services/agents monitoring them, (ii) supporting standard formats
for representing monitored data, such as OpenTelemetry, and (iii) better support
the migration towards newer releases of the monitoring tool, without requiring
a reboot of either the monitoring tool or the monitored services, etc.
User-oriented metrics and system-oriented metrics. Figure 11 reports
the co-occurrences between user- and system-oriented metrics. It does not come
as a surprise that the most frequently-used user-level metrics (e.g., those about
timing, networking, and failure) co-occur with the most frequently-used system-
level metrics (e.g., those about CPU load, IO operations, memory usage, net-
work traffic, DB usage). In this case we did not observe any significant gap to be
filled by researchers and tool vendors. However, we noticed interesting results
when analysing the co-occurrences of user-oriented metrics (see Section2.9.3)
and system-oriented metrics (see Section2.9.3).
Co-occurrences of user-oriented metrics. Figure 12 reports the co-
occurrences between different user-oriented metrics. The user-level metrics that
co-occur more frequently in our collected data are the following: Timing and
Failure metrics (19 co-occurrences), Timing and Networking met-
rics (18 co-occurrences), and Failure and Networking metrics (17 co-
occurrences). Those co-occurrences are expected since Timing metrics (e.g.,

47

Figure 11: Co-occurrences between user-oriented and system-oriented metrics

system overall latency, average response time) can strongly depend on possible
system failures, and availability, and its communication infrastructure. Cus-
tom metrics defined by DevOps engineers also tend to co-occur with timing
metrics (13 co-occurrences); we speculate that the latter is an indication
of the fact that raw timing metrics might not always be enough to observe the
overall system health and monitoring tools provide means for allowing DevOps
engineers to add their own custom metrics, such as the well-known “Time to
First Tweet”, defined as: “the amount of time it takes from navigation (clicking
the link) to viewing the first Tweet on each page’s timeline” [30]. In a recent
industrial case study we empirically observed that product-specific metrics like
the “Time to First Tweet” exhibit a perfect correlation with the user-perceived
load time, thus proving higher value with respect to generic/raw performance
metric [74]. We also observed two interesting gaps: current monitoring tools
never support at the same time user-oriented metrics covering (i) Security and
DBs metrics and (ii) Container lifecycle and Failure metrics. Those two gaps
might be opportunities for tool vendors willing to expand the features of their
tools in terms of observability capabilities at a higher level of abstraction than
that of system level.

48

Figure 12: Co-occurrences between different user-oriented metrics

Co-occurrences of system-oriented metrics. Figure 13 reports the co-
occurrences of different system-oriented metrics. As expected, the most frequent
co-occurrences are about system metrics that are frequently used when monitor-
ing Cloud-based systems, such as: network traffic and memory usage (49
co-occurrences), network traffic and CPU load (44 co-occurrences),
network traffic and I/O operations (41 co-occurrences), I/O oper-
ations and memory usage (44 co-occurrences), I/O operations and
CPU load (42 co-occurrences). We observed potentially-interesting gaps
related to the power consumption of the system. Indeed, even though energy
and power consumption are being monitored by multiple Cloud vendors [88], the
monitoring tools providing power consumption metrics (i.e., T1, T6, T10, T59)
do not provide other metrics that are conceptually strongly linked to power
consumption. Specifically, according to our analysis, there is no monitoring
tool that supports at the same time metrics about power consumption and (i)
the temperature of the processors, (ii) system load, (iii) container lifecycle, and
(iv) system failures. We invite vendors of monitoring tools to support the four
previously-mentioned metrics since they can help DevOps engineers in (i) better
understanding the reasons they might observe peaks of power consumption in
their system and (ii) finding solutions for reducing the overall power consump-

49

Figure 13: Co-occurrences between different system-oriented metrics

tion of their systems. As an example of such solutions that can be achieved when
using power metrics combined with other ones, we mention Kube Green9. Kube
Green is a Kubernetes addon that automatically shuts down pods in Kubernetes-
based systems when they are not strictly needed (i.e., dev/testing pods outside
office hours); in this case, the status the lifecycle of each container might be
monitored in combination with the power consumption of the system in order
to semi-automatically trigger Kube Green and turn off selected containers based
on their lifecycle status.
Requests tracing and targeted quality attributes. Figure 14 reports
the co-occurrences of the Tracing parameter (i.e., the tool supports request
tracing) with quality attributes. Being performance and reliability the most
targeted quality attributes in our dataset, they are also the ones with higher co-
occurrences with the Tracing parameter. Here we can see a certain balance for
performance, where 29 monitoring tools provide support for distributed
tracing, as opposed to 34 monitoring tools not supporting it. An example of
tools supporting distributed tracing and targeting performance is Zipkin (T2),
which allows DevOps engineers to diagnose latency problems by collecting traces
of service calls annotated with timing information. The data about reliability

9https://github.com/kube-green/kube-green

50

https://github.com/kube-green/kube-green

Figure 14: Co-occurrences between the support for tracing and quality attributes

is relatively similar, but less balanced, with 21 tools supporting distributed
tracing versus 32 tools not supporting it. An example of tools supporting
distributed tracing and targeting reliability is Jaeger (T4), which includes in
its produced traces also error codes of the requests made within each trace, in
addition to timing information (thus covering also performance). We speculate
that for DevOps engineers the choice of having a monitoring tool supporting dis-
tributed tracing boils down to organizational constraints related to the required
level of observability of the system; this decision is important since distributed
tracing does not come for free, tracing can add significant overhead to the system
(thus impact performance), several tools supporting tracing require instrument-
ing the services being monitored, analyzing traces might be non trivial, specially
with systems with failover mechanisms (thus leading to different paths under
the same scenarios), etc. When taking this decision, examples of questions that
DevOps engineers might ask themselves include: do they need to understand the
behavior of the system as a whole? Will chains of service calls be audited either
internally or by an external body in the future? Etc.
Testing and targeted quality attributes. Figure 15 reports the co-
occurrences of the parameter Testing (hence the tool is integrated with testing)
and quality attributes. All monitoring tools targeting the performance of
the system also provide some integration with testing; similarly, 9 out of the
11 tools supporting testing target reliability. This result is not surprising due
to the fact that performance and reliability are by far the most targeted quality
attributes in our dataset. Amazon CloudWatch (T29) is an example of moni-
toring tool supporting testing and targeting both performance and reliability.
Amazon CloudWatch provides the concept of canary, which is a script written
either in Node.js or Python implementing an end-to-end test case. While ex-
ecuting canaries Amazon CloudWatch can collect timing metrics (e.g., loading
time of a web page), the number and type of successful and failing HTTP(S)
requests together with their response codes, and screenshots of the UI. The ex-
ecution of canaries can be triggered either manually by DevOps engineers or
on a schedule. However, security aspects are targeted by only 3 monitoring
tools, i.e., Splunk (T60), DataDog (T67), and Akamai mPulse (T69), and none
of them is open-source. As an example, Splunk allows DevOps engineers to (i)
setup a small-scale testing environment mirroring the topology of the system

51

Figure 15: Co-occurrences between the integration with testing and quality at-
tributes

in production, (ii) define realistic test data, and (iii) generate test cases for
specific aspects of their Splunk extensions. Interestingly, we did not observe
any monitoring tool integrated with testing that targets either compatibility
or energy. These might be two promising research directions for the software
engineering community. Recently, some steps are being done on green testing of
Cloud applications [88], i.e., the practice of assessing the energy consumed by
running test cases. This problem is attracting the attention of researchers since
it has been observed that many teams produce, maintain, and run test cases
without any strong underlying test strategy, wasting resources (and producing
carbon emissions).

52

3 Modeling

A system designer has in his or her possession a wide range of analytical mod-
elling techniques to choose from. Each of these techniques has its own strengths
and weaknesses in terms of accessibility, ease of construction, efficiency and ac-
curacy of solution algorithms, and availability of supporting software tools. The
most appropriate type of model depends upon the complexity of the system, the
questions to be studied, the accuracy required, and the resources available to
the study. In the following, many references about usage modeling and failure
modeling are analyzed to understand their applicability for MSAs in a DevOps
context.

3.1 Usage modeling
Modeling how a system is used in operation is a fundamental practice to

understand the quality provided by that system after the deplyment in the
execution environment. This Section reviews strategies for usage modelling
proposed and used in the context of Microservice a application and/or in a
DevOps context.

When evaluating distributed software system quality the concept of opera-
tional profile assumes a critical importance as a quantitative characterization of
how customers will use the system in production [62]. In fact, to satisfy user
requirements it is important to be able to profile actual usage, so that the sys-
tem can then be tested by reproducing and predicting users’ experience. It is
well known that deriving an operational profile before product release is hard,
and the overhead costs often discourage SRE adoption in industry [56].

The continuous monitoring of the system during the operation proper of
DevOps practices allows a more cheap definition of an operational profile [11,68].

In the context Microservices Arichitectures (MSA) it is defined as probability
distribution over the demand spaces of: all microservices [67], or different sys-
tem’s users [13]. A more fine modeling can be performed considering stochastic
models, like Markov models in order to represents users behavior or the system
itself [85, 86,95].

Pietrantuono et al. [67] model the usage of Microservices through a proba-
bility distribution over the demand spaces of all microservices. In this way the
usage of a MSA can be described at methods granularity. That representation
of the usage is called operational profile. The operational profile can be used for
many purpose, like reliability testing [67,69] or performance/load testing [1]. In
this latter case, the operational profile can also be seen with a different concern,
related to the different characteristics of the operational environment in terms
of phisical/virtual resources (CPU, Memory, and so on).

Camilli et al. [13] gives a probabilistic representation of user sessions in
terms of a Discrete Time Markov Chain (DTMC). In particular, they extend the
modeling approach introduced in [91] by additionally considering the input space
in the construction of the Markov chain. Essentially, the nodes of the DTMC

53

model represent the requests that can be issued to the system by providing
either a valid or invalid input values, according to the API specification. Thus,
the input space for each request is partitioned into valid and invalid classes,
henceforth referred to as request classes. The transitions (i.e., weighted edges)
in the DTMC specify the probability of moving from a given request class to
the next one.

3.2 Failure modeling
This Section reviews strategies that are suitable for capturing and modelling

the failing behaviour of a Microservice application in a DevOps context. Also,
we report about those works that have applied such strategies to microservices
in the last years.
Combinatorial models. Combinatorial models are the simplest ones, as do
not make use of any state-space representation. In these models, the measures
of interest about the quality of the overall system are derived by combining
the corresponding measures at component-level assuming the independence be-
tween components. The system is typically divided into a set of non-overlapping
modules, each one associated with either a probability of working, Pi (or a prob-
ability as function of time, e.g., Ri(t)). The goal is to derive the overall Psys

value (or function Rsys(t)), representing the probability that the system sur-
vives (until t). These models typically enumerate all the system states, by
using combinatorial counting techniques to simplify the process.

Typical metrics of interest are reliability, availability, survivability or re-
siliency. Reliability block diagrams (RBDs), fault trees (FTs) and reliability
graphs (RGs) are combinatorial formalisms commonly used to study the de-
pendability of systems. They are concise, easy to understand, and have efficient
solution methods. However, realistic features such as interrelated behaviour of
components, imperfect coverage, non¬zero reconfiguration delays, and combina-
tion with performance cannot be captured by these models. These arguments led
to the development of new formalisms, such as dynamic fault trees (DFTs) and
dynamic reliability block diagrams (DRBDs), to model reliability interactions
among components or subsystems. A brief overview of traditional non-state
space models can be found in [63], while some of their “dynamic” extensions are
outlined in [23], such as Dynamic Fault Trees (DFT) [?], Parametric Fault Trees
(PFT) [?], and Repairable Fault Trees (RFT) [?].
State-space models. When the accuracy of combinatorial models is not
enough to capture the characteristics of the system to be modelled, state space
based models are considered. Models in this category have a greater modelling
power and flexibility than combinatorial models, but the state space analysis
may be computationally expensive. This depends on the number of states in
the model, since the state space size grows exponentially with the number of
components in the system. The basic formalism for state-space modelling are
Markovian models. A Markov process is a stochastic process whose dynamic be-
haviour is such that probability distributions for its future development depend
only on the present state and not on how the process arrived in that state [?].

54

When the state-space is discrete (i.e., the set of all possible values that can be
assumed by random variables of the process is discrete), the Markov process is
known as a Markov chain. Markov chains are a fundamental block for state-
space analysis. They have been used to model a wide number of systems, ranging
from network systems, protocols hardware components, software/hardware sys-
tems and software applications, complex clustered systems, and for analysing
any kind of dependability and performance-related attributes (reliability , avail-
ability, performability, survivability). Typical Markovian models are: discrete
time Markov chains (DTMCs), when the model adopts a discrete index T (usu-
ally representing the time), continuous time Markov chains (CTMCs), when T
is a continuous index, and Markov Rewards Models (MRMs), when the Markov
chain also includes a reward rate (or weight) attached to the states in order to
derive additional measures (e.g., expected accumulated reward in a given inter-
val). The model is usually graphically represented by a state-transition graph,
which highlights the system states (the nodes) and transitions among them (the
edges) labelled by the one-step transition probability value. When the Marko-
vian memoryless property does not hold (i.e., it does not accurately describe
the system being modelled), non-Markovian models (such as semi-Markov pro-
cesses or Markov regenerative models), or non-homogeneous Markov models are
employed, where other distributions are allowed. The accuracy they add to the
model is of course paid in terms of complexity in management, parameteriza-
tion and solution. With the increasing size of systems, this problem led to the
introduction of new formalisms and tools. One of this has been particularly
successful, due to its ability to concisely represent a complex system in an in-
tuitive fashion: this is Stochastic Petri Nets (SPNs). A fundamental feature of
SPNs is that there is a direct mapping between them and CTMCs, which al-
lows designers to model their system by the more intuitive SPN formalism, and
then to automatically translate it into a CTMC to be solved (by proper tools,
such as SPNP, DSPNExpress, GreatSPN, and SHARPE). Similarly, stochas-
tic reward nets (SRN), that are the extension of SPNs with the addition of
rewards, can be mapped onto Markov Rewards Models. Motivated by their
representational power (their graphical representation is also particularly suited
to model parallel architectures, concurrent programs, synchronization problems
and multiprocessor systems) and their solution capability as Markovian mod-
els, researchers defined several variants of stochastic Petri nets, well-suited to
particular application needs or solution methods (Generalized SPNs, Stochastic
Activity Networks (SANs), and Coloured Petri Nets (CPN)).
Hybrid models: Non-state-space models (e.g., RBDs, FTs) are undoubtedly
efficient to specify and analyse, but the independent assumption on which they
rely on may be too restrictive for many practical situations. On the other hand,
Markovian models provide the ability to model systems that violate this as-
sumption, but at the price of a state space explosion. One way to contain the
state-space explosion is hybrid modelling. The main idea is to hierarchically
compose/decompose the system and construct models accordingly: state-space
methods are used for those parts requiring dependences modelling, whereas
combinatorial methods are used for the parts that can be assumed independent.

55

Several research works try to combine the advantages of combinatorial and state
space based analysis methods: typically, minimal subsystems/components are
isolated and treated by state-space methods, and then they are combined in
a FT-like structure, exploiting combinatorial analysis techniques at the over-
all system level (these works also fostered proposals to extend the original FT
formalism in order to express dependencies by using an FT-like language). Ex-
ample of works adopting hybrid modelling are in [?] [?] [?] [?] [?] [?] [?]. For
instance, authors in [?] modelled a SIP Application Server configuration on
WebSphere, by using a set of interacting sub-models of all system components
capturing their failure and recovery behaviour. A service reliability analysis
adopting a hierarchical model is presented in [?]; the hierarchical modelling is
mapped to the physical and logical architecture of the grid service system and
makes use of Markov models, Queuing theory, and Graph theory to model and
evaluate the grid service reliability.

More generally, the space state explosion problem has triggered many stud-
ies based on two general approaches: “largeness avoidance" and “largeness tol-
erance". Largeness avoidance techniques try to circumvent the generation of
large models. They are complemented by largeness tolerance techniques which
provide practical modelling support to facilitate the generation and solution of
large state-space models. The two main approaches to attack this problem (in
which also most of the hybrid models fall) are:

1. compositional approaches, where the system model is constructed in a
bottom-up fashion. The models representing parts of the system are built
in isolation, and then composed via suitable operators and composition
rules;

2. decomposition/aggregation approaches, where the overall model is divided
into simpler and more tractable sub-models, and the measures obtained
from their solution are then aggregated to compute those concerning the
overall model;

Regardless to the modelling formalism adopted, model-based strategies can
be distinguished with respect to their objective: “black box” models aim to
evaluate how the attribute of interest (e.g., reliability) improves during testing
and varies after delivery; “architecture-based models”, focusing on understanding
relationships among system components and their influence on system reliability.
Clearly, in this Deliverable we focus on architecture-based modelling, as we are
interested in capturing the failing behaviour of a Microservice Architecture. The
latter ones can be categorized as: [?]:

• The above-mentioned State-based models, that use the control flow graph
to represent software architecture; they assume that the transfer of control
among components has a Markov property, modeling the architecture as
a DTMC, a CTMC, or an SMP or similar.

• Path-based models, that consider the possible execution paths of a pro-
gram.

56

• Additive-models, where the component failure probabilities (or related
measures like reliabilities) are modeled by non-homogeneous Poisson pro-
cess (NHPP) and the system failure intensity is estimated as the sum of
the individual components failure intensities.

Failure modelling in MSA. Specific approaches for MSAs are based on Fault
Trees [98] or Petri Nets [55] (aiming to reliability assessment), and redundancy
of Microservices [55] (aiming to reliability improvement).

Zang et al. [98] propose service dependency graph automatic generation
scheme and fault tree model. In particular, the service registry is used to obtain
the dependencies between microservices. The fault tree model is designed for
the system’s error tolerance scheme, and the model is quantitatively analyzed
according to the execution probability of each execution path.

Zheng et al. [55] used Petri nets to model microservice request, microservice,
microservice composition, and container, in order to identify the critical mi-
croservice in complex cloud applications. In particular, they focus on modeling
the reliability of cloud applications based on microservice through a redundancy
operation.

Other models are specific for the resiliency provided by MSAs [24, 97]. In
particular, in so distributed systems, the performance degradation of a certain
system can impact marginally on its availability and reliability. For this reason,
the resiliency is preferred as a characteristic describing “the ability to maintain
the performance of services at an acceptable level and recover the service back
to normal, when a disruption causes the service degradation” [97].

Dullmann et al. [24] propose a generative platform for benchmarking perfor-
mance and resilience engineering approaches in microservice architectures. The
approach comprises a metamodel defining the topology of the microservices, a
generator for the deployable artifacts of the synthetic microservices, and sup-
porting services for workload generation, problem injection, and monitoring.

57

4 Architectural modelling

Being able to clearly describe the architecture of the system is an important
aspect when trying to reason about it as a whole. To facilitate communication
among researchers and practitioners and between technical and non-technical
stakeholders, as well as to keep track of the evolution, it is important to have
a shared representation of the architecture. This can guide the design of the
system, help with exposing and analysing system qualities at different degrees
(e.g., performance, maintainability, functional suitability, scalability) and can
be seen as basis for understanding the system. At the same time, it can offer a
real time visualization of the system by bringing together the results of monitor-
ing. This is especially important in context of MSA-based systems, where the
architecture is rapidly evolving and new functionalities are released all the time.
To keep up with the fast pace and to deliver in a reliable manner, a common
representation of the system is essential. Otherwise, keeping track of tens or
hundreds of microservices, with structural and behavioral relations among them
can become cumbersome and even impossible at some point.

Of course, the complexity of a software architecture does not fit a one-
dimensional model. Different description methods must be considered with re-
spect to the targeted aspects of the system. The so called views are a good way
of breaking the multi-dimensions of the architecture into pieces and provide in-
sight into the most important concerns by means of manageable representations.
There are 3 main structures which model a system’s architecture: module, ori-
ented towards the structural, static aspects, component-and-connector, behav-
ioral structures which show the runtime behavior and interaction of components
and allocation structures, highlighting the relation between system components
and the environment (hardware, teams etc). [8] We will analyze how these types
of views are being used in the context of MSA-based systems.

In the following, we provide a detailed overview of relevant approaches for
modeling microservice-based systems. The presented data is based on two sys-
tematic mapping studies targeting MSA [22] and MSA in DevOps [33], along
with our own literature study of MSA-related publications from specialized
venues (ICSA and ECSA).

58

Approach Characteris
-tics

Description and
Uses

References

Box-and
-line

Architectural
block dia-
gram

- visual
- informal
notation

Blocks connected by
lines are used to rep-
resent the relation-
ships between high-
level system compo-
nents. An architec-
tural block diagram
provides vision on the
basic structure of the
system.

[54],
[48], [83],
[103],
[2], [87],
[17], [47],
[4], [15],
[104],
[51], [46],
[27], [50],
[49], [64],
[81]

Functional
flow block
diagram

- visual
- informal
notation

Used to represent
the functional flow
of a system over
time. For example,
flow diagrams can
be used to represent
incremental adoption
of a DevOps based
monitoring solu-
tion (OMNIA) [60],
or integration of
a microservice-
based platform
(SONATA) with a
DevOps methodol-
ogy (CI/CD) [77].

[60],
[41], [29],
[6], [77],
[100], [15]

59

Tiered ar-
chitecture
diagram

- visual
- informal
notation

Used to separate the
MSA into several
layers, such as IaaS
(Infrastructure as
a Service) or in-
frastructure layer,
PaaS (Platform as a
Service) or platform
layer and SaaS (Soft-
ware as a Service)
or service layer.
The IaaS and PaaS
layers are used for
development, deploy-
ment and operation
of the software
application - the
SaaS layer [65], [79].
Similarly, another
potential layering
of containerized
cloud applications
can include the
hardware layer,
the container layer
and the software
layer [6]. A more
coarse-grained ar-
chitecture separates
software services
into two tiers - busi-
ness microservices
(bound to business
domain) and API
microservices (CPU,
I/O or memory-
intensive microser-
vices, reusable across
multiple applica-
tions) [100].

[65], [79],
[6], [100],
[28]

60

Flowchart
- visual
- informal
notation

Used to represent a
workflow, or a pro-
cess, by means of
a sequence of steps
and decisions. For
instance, it can de-
scribe the scheduling
and execution of con-
tainerized microser-
vices in IoT [3], or
the incremental inte-
gration process

[3], [106]

UML
-based

Activity dia-
grams

- visual
- semi-
formal
notation

Used to present a se-
ries of actions, or
workflows in a sys-
tem, such as the mi-
gration to microser-
vices and develop-
ment process [29].

[29],
[104]

Sequence di-
agrams

- visual
- semi-
formal
notation

Used to present
object interactions
over time, it can, for
instance, show col-
laboration between
the development
and integration
teams during the
development of a
microservice-based
system (HARNESS),
with a DevOps
approach [79].

[79]

Class dia-
grams

- visual
- semi-
formal
notation

Used for conceptual
modeling, it can show
the static structure of
the tool for incremen-
tal integration of mi-
croservices [106].

[106]

Component
diagrams

- visual
- semi-
formal
notation
- physical
model

Used to present the
physical model, or
the physical compo-
nents of the system
(services, libraries,
load balancers etc).

[5], [4]

61

ADL
TOSCA - formal no-

tation

OASIS TOSCA
(OASIS Topology
and Orchestration
Specification for
Cloud Applications)
is the de-facto open
standard language
for infrastructure-as-
code (IasC), based
on the “intent mod-
elling” paradigm. It
aims to ensure re-
silient, portable and
long-lived orchestra-
tions, by describing
the topology of the
architecture, with
the relationships
and dependencies
between services
hosted on a cloud
platform. It uses a
Service Template,
made of the Topology
Template (nodes and
their relationships)
and Plans, to define
the services.
Depending on the
version, the language
is based on XML, or
YAML.
TOSCA can very well
fit in the context of
MSA.

[82]

62

MicroART-
DSL

- formal
notation

MicroART is a
domain specific lan-
guage based on EMF
(Eclipse Modeling
Framework)10, built
around the following
concepts: MicroSer-
vice, ServiceType
(functional or infras-
tructural), Interface,
Link (communication
among interfaces),
Clusters (logical
groupings of mi-
croservices), Teams
and Developers.
MicroART, an
architecture re-
covery tool for
microservice-based
systems conforms
to MicroART-DSL.
It can generate
graphical represen-
tations of the MSA,
showing the real
dependencies be-
tween microservices
from the develop-
ment perspective.
MicroART-DSL al-
lows representing
both the physical
and the logical ar-
chitecture models.
These aid architec-
tural analysis and
reasoning, provide
documentation and
validation between
the deployed ar-
chitecture and the
designed one and

[37] [40]

10https://www.eclipse.org/modeling/emf/

63

help with attributing
microservices to their
owning teams.

DIARy - formal no-
tation

The DIARy-
specification-profile
is an extension of
the SoaML and
UML metamodels.
It helps create the
Extended Increment
Architecture Model,
used for specifying
how an increment
architecture will be
integrated into an
existing cloud ser-
vices architecture. It
requires document-
ing the architecture
of the increment,
the logic of the in-
tegration and the
architectural impact
of the integration.
Based on DIARy,
platform-specific
cloud artifacts can
be generated, such
as source code,
environment spe-
cific deployment
and architectural
reconfiguration
scripts [106].

[105]
[106]

64

Medley - formal no-
tation

Medley DSL is a
domain-specific lan-
guage for describing
orchestration using
high-level constructs
and domain-specific
semantics, intro-
duced as part of a
service decomposi-
tion platform with
the same name. The
Medley specification
is focused on business
logic - how services
are assembled, to-
gether with the
composition logic,
abstracting it from
the implementation
details.

[9]

Own-DSL - formal no-
tation

This specification
helps representing
a microservice envi-
ronment, by creating
an instance of the
proposed meta-
model [25]. This
defines microservice
types, dependencies,
instances deployed,
as well as the API
via RESTOperations
(URLs are mapped
to methods of a
microservice) and
versioning.
Each instance of
this metamodel can
be used for code
artifacts generation
(source code, de-
ployment scripts
etc).

[25]

65

OCCI Ex-
tension

- formal no-
tation

It targets the spec-
ification of a moni-
toring infrastructure,
provided as a service,
in a container-based
distributed system.
It is based on OCCI
(Open Cloud Com-
puting Interface), a
standard for describ-
ing cloud provisions.
The specification in-
cludes the core OCCI
classes (Resource
and Link), together
with those in the
monitoring extension
(Sensor and Collec-
tor). Therefore, it
allows the definition
of a hierarchical
monitoring infras-
tructure, using two
types of instances -
of measurement and
data distribution.

[18]

66

UDL - formal
notation

UDL is a XML-based
description language
for microservices
executed on mobile
devices. It consists
of five sub-languages:
- UDL-SP - mi-
croservice profile,
by providing the
descriptive and func-
tional definition of
the service
- UDL-CD - mi-
croservice content
description, by defin-
ing the received and
produced content
- UDL-CP - mi-
croservice capability
profile
- UDL-SL - microser-
vice logic, by defining
the functional and
operational aspects,
independent of the
platform
- UDL-SR - mi-
croservice rendering,
by defining the
abstract, available
graphical elements
for the service GUI,
independent of the
platform
UDL enables end-
user mobile service
creation as part of
the m:Ciudad plat-
form.

[20]

67

CAOPLE

- pro-
gramming
language
- formal
notation

CAOPLE (Caste-
centric Agent-
Oriented Program-
ming Language and
Environment) [96]
is an agent-oriented
language used for
modeling, develop-
ment, and testing
of model-based
microservices. In
CAOPLE, programs
are constructed from
castes (caste-centric)
and every agent, the
basic building block,
is an instance of a
caste. The CAVM-2
virtual machine pro-
vides the runtime of
this language.
CAOPLE is part
of CIDE (CAOPLE
Integrated Develop-
ment Environment),
an integrated soft-
ware development
environment built to
support continuous
testing and seam-
less integration of
microservices [54].

[96], [54],
[103]

CAMLE - formal no-
tation

- CAMLE (Cloud
Application Model-
ing and Execution
Language) is a mod-
eling language which
enables a tool con-
structing graphical
models of systems.
This was integrated
into CIDE [54].

[54]

68

SLABS - formal no-
tation

SLABS (Specifi-
cation Language
for Agent-Based
Systems) is a model-
based formal spec-
ification language
for agent-based sys-
tems integrated into
CIDE [54], which
can conveniently
transform it into
CAOPLE. It consists
of a set of specifica-
tions of agents and
castes.

[54] [102]

Jolie - formal no-
tation

Jolie11 is an open-
source programming
language for de-
veloping microser-
vices [61]. The basic
building blocks are
services that com-
municate over the
network.
Jolie is used by JRO
(Jolie Redeployment
Optimiser), a tool for
automatic and op-
timized deployment
of microservice-based
systems [34], to sup-
port the writing and
execution of services.

[34] [61]

11https://www.jolie-lang.org/

69

SDA - formal no-
tation

SDA (Service
Desiderata Lan-
guage) is a domain
specific language
used to express the
specification of the
target configuration
of a microservice-
based system. The
SDA grammar is
capable of defining
different constraints,
such as the number
of desired services,
co-location or service
distribution.

[34]

Table 20: Architectural languages used with MSA

The inventory gathers different types of views used by researchers to describe,
communicate and analyze microservice-based systems. Their representation
choices vary from informal box-and-line notation, to UML-based structures and
ADLs (architecture description languages) proposed as DSLs (domain-specific
languages) for the domain of MSA [57]. The diversity in approaches signals the
fact that so far there is no widely adopted and industry-proven standard archi-
tecture language for microservices. Depending on the specific requirements of
the µDevOps project, we will select the most suitable notation for representing
the software architecture of systems in the context of MSA/DevOps.

5 Study on the DSML(s) for µDevOps

In this section we report on our investigation of the set of Domain-Specific
Modeling Language(s) (DSMLs) for supporting DevOps in reasoning on the sys-
tem architecture and coping with the dynamic and changing aspects of the appli-
cation at runtime. Specifically, we will identify µDevOps-suited behavioural and
architectural modelling techniques and DSMLs which will be central to all the
other work packages of the project. A first proposal for the modeling techniques
and DSML(s) will be presented in the remainder of this section. Feedback about
the usage of such modeling techniques and DSML(s) from all project partners
involved in WP3, WP4, and WP5 will be collected in order to assess whether
an update of the proposed modeling techniques and DSML(s) will be necessary,
based on emerging needs.

This study is composed of two main phases: (i) identification of needs and
practices of project partners and (ii) proposal for the µDevOps DSML(s).

70

5.1 Identification of needs and practices of project part-
ners

In order to identify the needs and practices of project partners with respect to
the DSML(s) used in µDevOps we designed an online questionnaire and invited
all project partners to provide their inputs. The purpose of the questionnaire
is to identify and understand the needs, requirements, and practices of both
academic researchers and industrial practitioners with respect to the DSML(s)
for representing the architecture of microservice-based systems in WP2, WP3,
WP4, and WP5 in the µDevOps project.

The target audience of the questionnaire is: academic researchers and in-
dustrial practitioners who will work on WP2, WP3, WP4, and WP5 in the
uDEVOPS project. In the questionnaire, we ask participants to think of their
next activities in the context of the µDevOps project they will be involved in,
and provide their answers based on those. We designed the questionnaire in
such a way that filling it out would take approximately 10 to 15 minutes. The
participation to the questionnaire was not anonymous, in order to have the pos-
sibility to follow up to the partners in case we need clarifications. In any case,
the responses to the questionnaire are handled with care and confidentiality and
will never be distributed outside the µDevOps consortium.

We designed the questionnaire based on our experience with previous stud-
ies [19, 58], related literature (e.g.,), and the results of a recent study we per-
formed on monitoring tools for DevOps and microservice-based systems [36].

The questionnaire is composed of 4 main sections:

• Expected usage of the DSML in µDevOps: this section of the ques-
tionnaire is about how the participant is planning to use the DSML in the
next WPs of the µDevOps project.

• What needs to be represented: this section of the questionnaire is
about the aspects of the system modelled using the DSML in the next
WPs of the µDevOps project.

• Characteristics of the DSML: this section of the questionnaire is about
the main characteristics of the DSML to be used in the next WPs of the
µDevOps project.

• Closing: this section wraps up the questionnaire and invites the partici-
pant to provide any comments relevant to this study.

Each of the above-listed sections contains a variable number of questions,
for a total of 17 individual questions. The specific questions belonging to each
section of the questionnaire are described in the remainder of this section, where
we will provide the results of the questionnaire.

Overall, the questionnaire was filled out by 10 participants. The set of
participants covers four out of six partners of the µDevOps project.

71

5.1.1 Expected usage of the DSML in µDevOps

The first question is about whether the participant is already using
any DSMLs for modeling the architecture of microservice-based systems. Par-
ticipants answered as follows:

• No (6);

• Palladio [71] (2); Palladio is used for architecture documentation and per-
formance and reliability prediction;

• JSON files in µBench [21] (2); µBench is a tool-based approach for the
automatic generation (and simulation) of microservice-based systems;

• Swagger12/OpenAPI13 descriptions (2); they are both based on a JSON-
based representation of the REST APIs provided by services;

• UML (1) is used for architecture documentation.

When asked about how the architectural models are going to be used,
the participants provided the following answers:

• For representing monitoring information about the microservices (6);

• For planning/reasoning on the next improvements of the system (5);

• For test cases generation (5);

• For identifying architectural issues within the system (2);

• Used at runtime for self-configuration (0).

Participants created/updated architectural models as follows:

• Manually by a developer/engineer (7)

• Automatically in a dynamic way, for example, via monitoring (4);

• Automatically in a static way, for example, via source code analysis (1).

In another question, we asked about how frequently are the architec-
tural models changing. Participants answered that architectural models
primarily changed rarely (4) and sometimes (4), followed by usually (1) and
don’t know (1). Interestingly, no participant answered that architectural mod-
els change every time.

When asked about which specific quality attributes will be targeted while
working with the DSML(s), participants mentioned the following ones:

• Performance (8);
12https://swagger.io
13https://www.openapis.org

72

https://swagger.io
https://www.openapis.org

• Reliability (8);

• Energy efficiency (5);

• Security (3);

• Operability (2);

• Maintainability (2);

• Safety (1);

• Compatibility (0).

Interestingly, the most frequent pairs of considered quality attributes are:
performance + reliability (6 answers) and performance + energy efficiency (5
answers). Also, energy efficiency is always paired with performance, highlight-
ing the strict relationship (and involved trade-offs) between those two quality
attributes.

The most mentioned stakeholders using the architectural models are:

• DevOps engineers (4);

• architects (2);

• testers (2);

• researchers (1).

5.1.2 What needs to be represented

The first question we asked about what needs to be represented using
the DSML(s) in µDevOps, the participants answered as follows:

• Logical architecture – for example: services dependencies from a develop-
ment perspective (5);

• Physical architecture – for example: how the services are deployed on
physical machines, how they communicate (4);

• Both logical and physical architectures (1).

We also asked participants to provide an indication of which architectural
information needs to be represented in the DSML(s). Their answers are
reported below:

• Services/microservices (10);

• Communication – who calls whom (9);

• Traces (service calls as they propagate within the system) (8);

• The APIs exposed by each service (7);

73

• Virtualization aspects, such as containers and/or virtual machines (6);

• Deployment information – for example: hosts, physical machines (5);

• Metrics associated to individual services (5);

• Infrastructural services – for example: service brokers, monitoring services,
etc. (3);

• External systems – for example: used external APIs, third-party systems
(3);

• Internal behaviour of the services (2);

• Global behaviour of the system (2).

5.1.3 Characteristics of the DSML

In this section we aimed at collecting information about the possible techni-
cal characteristics of the DSML(s) to be used in the µDevOps project.

As a starting point, we asked participants to provide any examples of
already-existing DSMLs that are similar to the one they will need in the
µDevOps project. The answers provided by the participants mentioned the fol-
lowing DSMLs: (i) Docker compose14, (ii) Swagger, (iii) µBench’s configuration
files, (iv) the Microservice Domain-Specific Language15 (MDSL), and (v) UML
collaboration diagrams augmented with dynamic information (e.g., number of
actual calls among microservices). Interestingly, no participant mentioned any
language belonging to the Palladio tool suite.

When defining (and using) a DSML it is important to use a concrete syntax
that fits well with the modeling ergonomics of the stakeholders using them. So,
we asked participants to provide an indication about which type of archi-
tectural representation shall be supported by the DSML. The answers
provided by the participants are reported below:

• visual (8);

• textual (5);

• tabular (3);

• it does not matter since the definition of the DSML’s concepts is decoupled
from its concrete syntax (1).

When asked about whether the participants would need a platform-independent
representation of the architecture of the system, the majority of them an-
swered positively (6 participants), followed by 3 participants who did not give
any indication, and 1 participant replying negatively.

14https://docs.docker.com/compose
15https://microservice-api-patterns.github.io/MDSL-Specification/

74

https://docs.docker.com/compose
https://microservice-api-patterns.github.io/MDSL-Specification/

In terms of required modeling technologies for realizing the DSML(s),
the majority of participants did not express any specific requirement (6), fol-
lowed by an equal number of participants requiring either Eclipse (specifically,
EMF) and Jetbrains MPS (2 participants each).

For many years UML has been prominent for modeling the architecture of
software-based systems in general [58]. So, we asked participants whether they
would prefer to have µDevOps DSML(s) based on UML. Their answers are
generally positive, with the following answers:

• Strongly agree (2);

• Agree (5);

• Neutral (0);

• Disagree (1);

• Strongly disagree (0);

• Don’t know (2).

Finally, when asked which level of formality shall have the description of
the semantics of the DSML(s) in µDevOps, the participants answered as follows:

• Semi-formal – a la UML (8);

• Formal – each concept of the DSML is specified mathematically (1);

• Informal – textual description of the main concepts of the DSML (0);

• Don’t know (1).

∗ ∗ ∗

In the closing section of the questionnaire, we received two comments. The
first one is about one of the partners giving their availability to provide more
information about the Palladio component model (with a link to a downloadable
executable of its supporting modeling tool). The second comment nicely sum-
marizes the expectations of the partners; we report such comment verbatim:
“Concepts in the remaining WPs are about testing/quality attributes (WP3),
risk assessment (WP4) which will mostly mix the quality attributes with usage
profiles to assess a risk, and deployment on Cloud of the µDevOps prototype.
Any concept related to this could be useful in a DSML”.

5.2 Proposal for the µDevOps DSML(s)
By analysing the results of the online questionnaire discussed in the previous

section, it is interesting to note the heterogeneity of the requirements of the
µDevOps consortium. For example, when asked about the concepts that should

75

be represented in the DSML, participants highlighted the need for represent-
ing services and microservices, how the services communicate (i.e.,, the service
mesh), call traces, the APIs exposed by the services, deployment information,
and even metrics associated to services.

Overall, we extracted the following recurrent needs and practices, which are
relevant for the DSML(s) to be used in µDevOps. First of all, the DSML(s)
will be used for forward engineering, but also for monitoring and test
cases generation; in the first case, the architectural models are manually
created and edited by a developer/engineer, whereas in the second case they
are dynamically (and automatically) extracted from the running system via
monitoring. Also, participants did not highlight a general need to have an
always up-to-date representation of the architecture of the system; this means
that there is no need to integrate the DSML with a dedicated highly-
performant model extractor. According to the general interests within the
µDevOps project consortium and goals, the most targeted quality attributes
are performance, reliability, and energy efficiency of microservice-based
system, with a primary focus on their logical and physical architectures.

In terms of technical realization of the DSML(s), participants indicated to
need mainly a visual and textual representation of the architecture (at
best, integrated with each other). Also, the majority of participants indicated
the need to have a platform-independent representation of the architecture
of the system, with support for a UML-based representation, which is by
definition semi-formal. Finally, some participants highlighted the need to realize
the DSML(s) based on different modeling platforms, such as the Eclipse
Modeling Framework (EMF) and Jetbrains MPS.

Based on the requirements elicited above, having a single DSML supporting
all needs and practices of µDevOps partners will be counterproductive for the
project. Indeed, such a single DSML will inevitably contain a large set of
potentially unrelated concepts, belonging to different levels of abstraction. All
concepts of such a hypothetical large language will need to be defined from
scratch, maintained, and their consistency will need to be ensured (at least semi-
formally). Moreover, the modeling tool for such a unique language will need
to be realized from scratch and across multiple modeling platforms, basically
duplicating years of effort spent by multiple research and development teams on
already-existing modeling languages for the architecture of microservice-based
systems.

In the context of µDevOps, we propose to follow the principle of “using
the right tool for the right job” and invite project partners to reuse already-
existing modeling languages in the project, where each modeling language
will support at best their needs and practices in the specific work packages
of the project. Based on the information collected in the online survey, project
partners might use: (i) Palladio, (ii) the configuration files of µBench, (iii) Open
API specifications, and (iv) UML.

We are aware that using multiple DSMLs in parallel might raise the risk
of having inconsistencies (both syntactical and semantic) among models repre-
senting the same system [59]. If some level of portability of the information

76

belonging to multiple models is necessary, we suggest developing model-to-
model transformations to automatically transform models conforming to a
DSML (e.g., Palladio) to models conforming to other DSMLs (e.g., Open API
specifications or µBench configuration files). Thanks to the conceptual align-
ment between Palladio and UML, some steps towards this direction have been
already made in the context of Palladio, for which a model-to-model transforma-
tion to UML is already existing16; model-to-model transformations from UML
to the Palladio component model are already existing as well [12].

Finally, we would like to draw the attention of project partners to the Mi-
croArt DSML [38, 39]. It is a platform-independent DSML for representing
the architecture of microservice-based systems. The MicroArt DSML has been
designed by VU researchers around general microservice needs and character-
istics and it is kept minimal in order to support the design and description
of multiple microservice-based systems in a simple, but effective manner. The
main concepts of the MicroArt DSML include: product, microservice, interface
(with endpoints), communication links, host, cluster, developer, development
team, and various service types. The MicroArt DSML also allows DevOps engi-
neers to represent and evaluate software quality attributes for the architecture
of microservice-based systems [14]. Being it minimal and tailored to microser-
vices, the MicroArt DSML might be used by project partners as the lingua
franca within the µDevOps project consortium, both for communication and
more technical purposes.

6 Conclusion

The deliverable reported about the activities carried out in work package 2.
This pertained to the main aspects for characterizing a Microservice Develop-
ment Operations Engineering context, for what we called "context modelling"
aimed at context-driven quality assurance. We surveyed the different ways of
gathering information through monitoring; these are a crucial aspect in mi-
croservice archietctures, as allow to gather data then used for parameterizing
decision-support models. An extensive survey has been conducted about which
monitoring tools are available and what are their features (what they monitor,
how they monitor). The second part was about modelling: what are the for-
malisms that can be exploited to model the architecture and the correct and
failing behaviour of a system, possibly with the support of a DSML. The re-
sulting models allow supporting a plethora of quality-related activities, ranging
from testing, to root cause analysis, to KPI prediction. The results are being
used in the related WPs 3 and 4 and will be used in the final WP 5.

16https://github.com/PalladioSimulator/Palladio-Addons-PlantUML

77

https://github.com/PalladioSimulator/Palladio-Addons-PlantUML

References

[1] Alberto Avritzer, Daniel Menasché, Vilc Rufino, Barbara Russo, Andrea
Janes, Vincenzo Ferme, André van Hoorn, and Henning Schulz. Pptam:
Production and performance testing based application monitoring. In
Companion of the 2019 ACM/SPEC International Conference on Perfor-
mance Engineering, ICPE ’19, page 39–40, New York, NY, USA, 2019.
Association for Computing Machinery.

[2] Jeongju Bae, Chorwon Kim, and JongWon Kim. Automated deployment
of smartx iot-cloud services based on continuous integration. In 2016
International Conference on Information and Communication Technology
Convergence (ICTC), pages 1076–1081, 2016.

[3] Jeongju Bae, Chorwon Kim, and Jongwon Kim. Automated deployment
of smartx iot-cloud services based on continuous integration. pages 1076–
1081, 10 2016.

[4] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Migrating
to cloud-native architectures using microservices: An experience report.
pages 201–215, 07 2015.

[5] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microser-
vices architecture enables devops: Migration to a cloud-native architec-
ture. IEEE Software, 33(3):42–52, 2016.

[6] Cornel Barna, Hamzeh Khazaei, Marios Fokaefs, and Marin Litoiu. Deliv-
ering elastic containerized cloud applications to enable devops. 05 2017.

[7] L. Bass, I.M. Weber, and L. Zhu. DevOps: A Software Architect’s Per-
spective. Always learning. Addison-Wesley, 2015.

[8] Len Bass and Rick Kazman. Software Architecture In Practice. 01 2003.

[9] Elyas Ben Hadj Yahia, L. Reveillere, Bromberg Yerom, Raphaël Chevalier,
and Alain Cadot. Medley: An event-driven lightweight platform for service
composition. volume 9671, pages 3–20, 06 2016.

[10] Andre Bento, Jaime Correia, Ricardo Filipe, Filipe Araujo, and Jorge Car-
doso. Automated analysis of distributed tracing: Challenges and research
directions. Journal of Grid Computing, 19:1–15, 2021.

[11] Antonia Bertolino, Guglielmo De Angelis, Antonio Guerriero, Breno Mi-
randa, Roberto Pietrantuono, and Stefano Russo. Devopret: Continuous
reliability testing in devops. Journal of Software: Evolution and Process,
n/a(n/a):e2298, 2020. e2298 smr.2298.

[12] Andreas Brunnert, Alexandru Danciu, Christian Vögele, Daniel Tertilt,
and Helmut Krcmar. Integrating the palladio-bench into the software
development process of a soa project. In KPDAYS, pages 30–38, 2013.

78

[13] Matteo Camilli, Antonio Guerriero, Andrea Janes, Barbara Russo, and
Stefano Russo. Microservices integrated performance and reliability test-
ing. In 2022 IEEE/ACM International Conference on Automation of Soft-
ware Test (AST), 2022.

[14] Mario Cardarelli, Ludovico Iovino, Paolo Di Francesco, Amleto Di Salle,
Ivano Malavolta, and Patricia Lago. An extensible data-driven approach
for evaluating the quality of microservice architectures. In Proceedings of
the 34th Annual ACM/SIGAPP Symposium on Applied Computing, SAC
2019, Limassol, Cyprus, April 08-12, 2019, pages 1225–1234, 2019.

[15] Cloves Carneiro and Tim Schmelmer. Microservices from day one: : Build
Robust and Scalable Software from the Start, pages 151–174. Springer,
2016.

[16] N. Carstensen. What is log management? a complete logging guide., 2020.

[17] Pethuru Raj Chelliah and Anupama Raman. Automated Multi-cloud Op-
erations and Container Orchestration, pages 185–218. 05 2018.

[18] Augusto Ciuffoletti. Automated deployment of a microservice-based mon-
itoring infrastructure. Procedia Computer Science, 68:163–172, 12 2015.

[19] Istvan David, Kousar Aslam, Ivano Malavolta, and Patricia Lago. Collab-
orative model-driven software engineering – a systematic survey of prac-
tices and needs in industry. Journal of Systems and Software, 199:111626,
2023.

[20] Marcin Davies, François Carrez, Juhani Heinilä, Anna Fensel, Maribel
Narganes, and José Carlos dos Santos Danado. m:ciudad: enabling end-
user mobile service creation. International Journal of Pervasive Comput-
ing and Communications, 7(4):384–414, 2011.

[21] Andrea Detti, Ludovico Funari, and Luca Petrucci. µbench: an open-
source factory of benchmark microservice applications. IEEE Transactions
on Parallel and Distributed Systems, 34(3):968–980, 2023.

[22] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. Architecting
with microservices: A systematic mapping study. Journal of Systems and
Software, 150:77–97, 2019.

[23] Salvatore Distefano and Antonio Puliafito. Dependability evaluation with
dynamic reliability block diagrams and dynamic fault trees. IEEE Trans-
actions on Dependable and Secure Computing, 6(1):4–17, 2009.

[24] Thomas F. Düllmann and André van Hoorn. Model-driven generation of
microservice architectures for benchmarking performance and resilience
engineering approaches. In Proceedings of the 8th ACM/SPEC on Inter-
national Conference on Performance Engineering Companion, ICPE ’17
Companion, page 171–172, New York, NY, USA, 2017. Association for
Computing Machinery.

79

[25] Thomas F. Düllmann and André van Hoorn. Model-driven generation of
microservice architectures for benchmarking performance and resilience
engineering approaches. In Proceedings of the 8th ACM/SPEC on Inter-
national Conference on Performance Engineering Companion, ICPE ’17
Companion, page 171–172, New York, NY, USA, 2017. Association for
Computing Machinery.

[26] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano.
Devops. IEEE Software, 33(3):94–100, 2016.

[27] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano.
Devops. IEEE Software, 33(3):94–100, 2016.

[28] Bob Familiar. What is a Microservice? Microservices, IoT, and Azure:
Leveraging DevOps and Microservice Architecture to Deliver SaaS Solu-
tions, Chapter 2. Springer, 2015.

[29] Chen-Yuan Fan and Shang-Pin Ma. Migrating monolithic mobile appli-
cation to microservice architecture: An experiment report. In 2017 IEEE
International Conference on AI Mobile Services (AIMS), pages 109–112,
2017.

[30] Maximiliano Firtman. Hacking Web Performance. O’Reilly Media, Inc.,
Sebastopol, CA, USA, June 2018.

[31] J. L. Fleiss, B. Levin, and M. C. Paik. The Measurement of Interrater
Agreement, chapter 18, pages 598–626. John Wiley & Sons, Ltd, 2003.

[32] Susan J Fowler. Production-ready microservices: building standardized
systems across an engineering organization. " O’Reilly Media, Inc.", 2016.

[33] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. Research on ar-
chitecting microservices: Trends, focus, and potential for industrial adop-
tion. In 2017 IEEE International Conference on Software Architecture
(ICSA), pages 21–30, 2017.

[34] Maurizio Gabbrielli, Saverio Giallorenzo, Claudio Guidi, Jacopo Mauro,
and Fabrizio Montesi. Self-Reconfiguring Microservices, volume 9660,
pages 194–210. 03 2016.

[35] Javad Ghofrani and Daniel Lübke. Challenges of microservices architec-
ture: A survey on the state of the practice. volume 2072, pages 1 – 8,
2018.

[36] Luca Giamattei, Antonio Guerriero, Roberto Pietrantuono, Stefano
Russo, Ivano Malavolta, Tanjina Islam, Madalina Dînga, Anne Koziolek,
Snigdha Singh, Martin Armbruster, José-María Gutierrez-Martinez, Ser-
gio Caro-Alvaro, Daniel Rodriguez, Sebastian Weber, Jorg Henss, Estrella
Fernandez Vogelin, and Fernando Simon Panojo. Monitoring tools for de-
vops and microservices: A systematic grey literature review. Journal of
Systems and Software, 208:111906, 2024.

80

[37] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta,
Ludovico Iovino, and Amleto Di Salle. Microart: A software architecture
recovery tool for maintaining microservice-based systems. In 2017 IEEE
International Conference on Software Architecture Workshops (ICSAW),
pages 298–302, 2017.

[38] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta,
Ludovico Iovino, and Amleto Di Salle. Microart: A software architecture
recovery tool for maintaining microservice-based systems. In Proceedings
of the 14th International Conference on Software Architecture (ICSA),
pages 298–302. IEEE, 2017.

[39] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta,
Ludovico Iovino, and Amleto Di Salle. Towards recovering the software
architecture of microservice-based systems. In 2017 IEEE International
Conference on Software Architecture Workshops, ICSA Workshops 2017,
Gothenburg, Sweden, April 5-7, 2017, pages 46–53, April 2017.

[40] Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta,
Ludovico Iovino, and Amleto Di Salle. Towards recovering the software
architecture of microservice-based systems. 2017 IEEE International Con-
ference on Software Architecture Workshops (ICSAW), pages 46–53, 2017.

[41] Jihun Ha, Jungyong Kim, Heewon Park, Jaehong Lee, Hyuna Jo, Heejung
Kim, and Jaeheon Jang. A web-based service deployment method to
edge devices in smart factory exploiting docker. In 2017 International
Conference on Information and Communication Technology Convergence
(ICTC), pages 708–710, 2017.

[42] Stefan Haselböck, Rainer Weinreich, and Georg Buchgeher. An expert
interview study on areas of microservice design. In 2018 IEEE 11th Con-
ference on Service-Oriented Computing and Applications (SOCA), pages
137–144, 2018.

[43] Josune Hernantes, Gorka Gallardo, and Nicolas Serrano. It infrastructure-
monitoring tools. IEEE software, 32(4):88–93, 2015.

[44] Darby Huye, Yuri Shkuro, and Raja R Sambasivan. Lifting the veil
on {Meta’s} microservice architecture: Analyses of topology and request
workflows. In 2023 USENIX Annual Technical Conference (USENIX ATC
23), pages 419–432. USENIX Association, 2023.

[45] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer.
What is devops? a systematic mapping study on definitions and prac-
tices. In Proceedings of the Scientific Workshop Proceedings of XP2016,
XP ’16 Workshops, New York, NY, USA, 2016. Association for Computing
Machinery.

81

[46] Kai Jander, Lars Braubach, and Alexander Pokahr. Defense-in-depth and
role authentication for microservice systems. Procedia Computer Science,
130:456–463, 01 2018.

[47] Miika Kalske, Niko Mäkitalo, and Tommi Mikkonen. Challenges When
Moving from Monolith to Microservice Architecture, pages 32–47. 02 2018.

[48] Hui Kang, Michael Le, and Shu Tao. Container and microservice driven
design for cloud infrastructure devops. In 2016 IEEE International Con-
ference on Cloud Engineering (IC2E), pages 202–211, 2016.

[49] Holger Karl, Sevil Dräxler, Manuel Peuster, Alex Galis, Michael Bredel,
Aurora Ramos, Josep Martrat, Muhammad Shuaib Siddiqui, Steven van
Rossem, and Wouter et al. Tavernier. Devops for network function virtu-
alisation: an architectural approach. Transactions on Emerging Telecom-
munications Technologies, 27(9):1206–1215, 2016.

[50] Stefan Kehrer and Wolfgang Blochinger. Autogenic: Automated genera-
tion of self-configuring microservices. In CLOSER, 2018.

[51] Chorwon Kim, Seungryong Kim, and Jongwon Kim. Understanding Auto-
mated Continuous Integration for Containerized Smart Energy IoT-Cloud
Service, pages 1275–1280. 01 2018.

[52] B. Kitchenham and P. Brereton. A systematic review of systematic
review process research in software engineering. Inf. Softw. Technol.,
55(12):2049–2075, dec 2013.

[53] H. Knoche and W. Hasselbring. Drivers and barriers for microservice
adoption – a survey among professionals in germany. Enterpr. Model. Inf.
Syst. Archit. - Int. J. Concept. Model., page 1–35, 2019.

[54] Desheng Liu, Hong Zhu, Chengzhi Xu, Ian Bayley, David Lightfoot, Mark
Green, and Peter Marshall. Cide: An integrated development environment
for microservices. In 2016 IEEE International Conference on Services
Computing (SCC), pages 808–812, 2016.

[55] Zheng Liu, Guisheng Fan, Huiqun Yu, Liqiong Chen, and Xiaoxian
Yang. An approach to modeling and analyzing reliability for microservice-
oriented cloud applications. 2021, January 2021.

[56] Michael R. Lyu. Software reliability engineering: A roadmap. In Future
of Software Engineering (FOSE), pages 153–170. IEEE, 2007.

[57] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and
Antony Tang. What industry needs from architectural languages: A sur-
vey. IEEE Transactions on Software Engineering, 39, 12 2012.

82

[58] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and
Antony Tang. What industry needs from architectural languages: A sur-
vey. IEEE Transactions on Software Engineering, 39(6):869–891, June
2013.

[59] Ivano Malavolta, Henry Muccini, Patrizio Pelliccione, and Damien Tam-
burri. Providing architectural languages and tools interoperability through
model transformation technologies. IEEE Transactions on Software En-
gineering, 36(1):119–140, jan 2010.

[60] Marco Miglierina and Damian Tamburri. Towards omnia: A monitoring
factory for quality-aware devops. pages 145–150, 04 2017.

[61] Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavat-
taro. Jolie: a java orchestration language interpreter engine. Electronic
Notes in Theoretical Computer Science, 181:19–33, 06 2007.

[62] John D. Musa and William W. Everett. Software-reliability engineering:
Technology for the 1990s. IEEE Software, 7(6):36–43, November 1990.

[63] D.M. Nicol, W.H. Sanders, and K.S. Trivedi. Model-based evaluation:
from dependability to security. IEEE Transactions on Dependable and
Secure Computing, 1(1):48–65, 2004.

[64] Rory O’Connor, Peter Elger, and Paul Clarke. Continuous software en-
gineering—a microservices architecture perspective. Journal of Software:
Evolution and Process, 29, 04 2017.

[65] Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. Architectural prin-
ciples for cloud software. ACM Transactions on Internet Technology, 18,
06 2017.

[66] K. Petersen, S. Vakkalanka, and L. Kuzniarz. Guidelines for conducting
systematic mapping studies in software engineering: An update. Infor-
mation and Software Technology, 64:1–18, 2015.

[67] R. Pietrantuono, S. Russo, and A. Guerriero. Run-time Reliability Esti-
mation of Microservice Architectures. In IEEE 29th International Sym-
posium on Software Reliability Engineering (ISSRE), pages 25–35. IEEE,
2018.

[68] Roberto Pietrantuono, Antonia Bertolino, Guglielmo De Angelis, Breno
Miranda, and Stefano Russo. Towards continuous software reliability test-
ing in devops. In Proceedings of the 14th International Workshop on Au-
tomation of Software Test, pages 21–27. IEEE, 2019.

[69] Roberto Pietrantuono, Stefano Russo, and Antonio Guerriero. Testing mi-
croservice architectures for operational reliability. Software Testing Veri-
fication and Reliability, 30(2), 2020.

83

[70] Dinesh Rajput. Hands-On Microservices–Monitoring and Testing: A per-
formance engineer’s guide to the continuous testing and monitoring of
microservices. Packt Publishing Ltd, 2018.

[71] Ralf Reussner, Steffen Becker, Erik Burger, Jens Happe, Michael Hauck,
Anne Koziolek, Heiko Koziolek, Klaus Krogmann, and Michael Kuper-
berg. The palladio component model. 2011.

[72] C. Richardson. Microservices Patterns: With examples in Java. Manning,
2018.

[73] C. Richardson. Microservices Patterns: With examples in Java. Manning,
2018.

[74] Jasper Van Riet, Ivano Malavolta, and Taher Ahmed Ghaleb. Optimise
along the way: An industrial case study on web performance. Journal of
Systems and Software, 198:111593, 2023.

[75] B. A. Schroeder. On-line monitoring: A tutorial. Computer, 28(06):72–78,
jun 1995.

[76] Yuri Shkuro. Mastering Distributed Tracing: Analyzing performance in
microservices and complex systems. Packt Publishing Ltd, 2019.

[77] Thomas Soenen, Steven Rossem, Wouter Tavernier, Felipe Vicens, Dario
Valocchi, Panos Trakadas, Panos Karkazis, George Xilouris, Philip
Eardley, Stavros Kolometsos, Michail Kourtis, Daniel Guija, Muham-
mad Shuaib Siddiqui, Peer Hasselmeyer, Jose Bonnet, and Diego Lopez.
Insights from sonata: Implementing and integrating a microservice-based
nfv service platform with a devops methodology. pages 1–6, 04 2018.

[78] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van
Den Heuvel. The pains and gains of microservices: A systematic grey
literature review. Journal of Systems and Software, 146:215–232, 2018.

[79] Mark Stillwell and Jose G. F. Coutinho. A devops approach to integration
of software components in an eu research project. QUDOS 2015, page 1–6,
New York, NY, USA, 2015. Association for Computing Machinery.

[80] D. Swersky. The hows, whys and whats of monitoring microservices., 2020.

[81] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Processes, motiva-
tions, and issues for migrating to microservices architectures: An empirical
investigation. IEEE Cloud Computing, 4(5):22–32, 2017.

[82] Damian Tamburri, Willem-Jan Heuvel, Chris Lauwers, Paul Lipton,
Derek Palma, and Matt Rutkowski. Tosca-based intent modelling: goal-
modelling for infrastructure-as-code. SICS Software-Intensive Cyber-
Physical Systems, 34, 06 2019.

84

[83] Tran Quang Thanh, Stefan Covaci, Thomas Magedanz, Panagiotis Gou-
vas, and Anastasios Zafeiropoulos. Embedding security and privacy into
the development and operation of cloud applications and services. In
2016 17th International Telecommunications Network Strategy and Plan-
ning Symposium (Networks), pages 31–36, 2016.

[84] TIOBE. TIOBE Index, June 2022. [Online; accessed 17. Jul. 2023].

[85] Paolo Tonella and Filippo Ricca. Statistical testing of web applications.
Journal of Software Maintenance and Evolution: Research and Practice,
16(1-2):103–127, 2004.

[86] C. Trammell. Quantifying the reliability of software: statistical testing
based on a usage model. In Proceedings of Software Engineering Standards
Symposium, pages 208–218, 1995.

[87] Demetris Trihinas, Athanasios Tryfonos, Marios D. Dikaiakos, and George
Pallis. Devops as a service: Pushing the boundaries of microservice adop-
tion. IEEE Internet Computing, 22(3):65–71, 2018.

[88] Roberto Verdecchia, Patricia Lago, Christof Ebert, and Carol De Vries.
Green it and green software. IEEE Software, 38(6):7–15, 2021.

[89] Markos Viggiato, Ricardo Terra, Henrique Rocha, Marco Túlio Valente,
and Eduardo Figueiredo. Microservices in practice: A survey study.
ArXiv, abs/1808.04836, 2018.

[90] Manish Virmani. Understanding devops amp; bridging the gap from con-
tinuous integration to continuous delivery. In Fifth International Con-
ference on the Innovative Computing Technology (INTECH 2015), pages
78–82, 2015.

[91] C. Vögele, A. van Hoorn, E. Schulz, W. Hasselbring, and H. Krcmar.
WESSBAS: Extraction of probabilistic workload specifications for load
testing and performance prediction–a model-driven approach for session-
based application systems. Software & Systems Modeling, 17(2):443–477,
2018.

[92] Yingying Wang, Harshavardhan Kadiyala, and Julia Rubin. Promises
and challenges of microservices: an exploratory study. Empirical Software
Engineering, 26(4):63, 2021.

[93] Muhammad Waseem, Peng Liang, and Mojtaba Shahin. A systematic
mapping study on microservices architecture in devops. Journal of Sys-
tems and Software, 170:110798, 2020.

[94] Muhammad Waseem, Peng Liang, Mojtaba Shahin, Amleto Di Salle, and
Gastón Márquez. Design, monitoring, and testing of microservices sys-
tems: The practitioners’ perspective. Journal of Systems and Software,
182:111061, 2021.

85

[95] J.A. Whittaker and M.G. Thomason. A markov chain model for statistical
software testing. IEEE Transactions on Software Engineering, 20(10):812–
824, 1994.

[96] Chengzhi Xu, Hong Zhu, Ian Bayley, David Lightfoot, Mark Green,
and Peter Marshall. Caople: A programming language for microservices
saas. In 2016 IEEE Symposium on Service-Oriented System Engineering
(SOSE), pages 34–43, 2016.

[97] Kanglin Yin and Qingfeng Du. On representing resilience requirements
of microservice architecture systems. International Journal of Software
Engineering and Knowledge Engineering, 31(06):863–888, 2021.

[98] Zhigang Zang, Qiaoyan Wen, and Kangming Xu. A fault tree based mi-
croservice reliability evaluation model. IOP Conference Series: Materials
Science and Engineering, 569:032069, 08 2019.

[99] He Zhang, Shanshan Li, Zijia Jia, Chenxing Zhong, and Cheng Zhang.
Microservice architecture in reality: An industrial inquiry. In 2019 IEEE
international conference on software architecture (ICSA), pages 51–60.
IEEE, 2019.

[100] Tianlei Zheng, Xi Zheng, Yuqun Zhang, Yao Deng, ErXi Dong, Rui Zhang,
and Xiao Liu. Smartvm: a sla-aware microservice deployment framework.
World Wide Web, 22, 01 2019.

[101] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan
Ding. Fault analysis and debugging of microservice systems: Industrial
survey, benchmark system, and empirical study. IEEE Transactions on
Software Engineering, 47(2):243–260, 2021.

[102] Hong Zhu. Slabs: A formal specification language for agent-based systems.
International Journal of Software Engineering and Knowledge Engineer-
ing, 11:529–558, 10 2001.

[103] Hong Zhu and Ian Bayley. If docker is the answer, what is the question? In
2018 IEEE Symposium on Service-Oriented System Engineering (SOSE),
pages 152–163, 2018.

[104] Sergey Zykov. Agile Services, pages 65–105. 04 2018.

[105] Miguel Zúñiga Prieto, Emilio Insfran, and Silvia Abrahão. Architecture
description language for incremental integration of cloud services archi-
tectures. 10 2016.

[106] Miguel Zúñiga Prieto, Emilio Insfran, Silvia Abrahão, and Carlos
Cano Genoves. Automation of the Incremental Integration of Microser-
vices Architectures, pages 51–68. 04 2017.

86

	Preliminaries
	Microservices Architecture
	DevOps

	Monitoring in DevOps and MSA
	Objective
	Definitions
	Related research
	Survey studies
	Systematic literature reviews

	Search process
	Research questions
	Tools selection process
	Data extraction
	Analysis

	Results - Overview
	Results – Functional and Technological Features. Addressed Challenges
	Targets, Features, Motivation
	Reporting
	Technologies
	Implementation/supported languages
	Addressed challenges

	Results – What is monitored
	User-oriented metrics
	System-oriented metrics
	Distributed tracing
	Failures/events logging
	Targeted quality attribute

	Results – How is monitoring done
	Instrumentation
	Monitoring patterns and practices
	Monitoring Granularity
	Integration with Testing

	Discussion
	Main findings and guidance for DevOps engineers
	Open challenges for researchers and tool vendors
	Cross-cutting findings

	Modeling
	Usage modeling
	Failure modeling

	Architectural modelling
	Study on the DSML(s) for µDevOps
	Identification of needs and practices of project partners
	Expected usage of the DSML in µDevOps
	What needs to be represented
	Characteristics of the DSML

	Proposal for the µDevOps DSML(s)

	Conclusion

