Project funded by the EU Horizon 2020 programme under the Marie

Skldowska-Curie grant agreement No 871342

uDevoOps

Software Quality Assurance for Microservice Development
Operations Engineering

Deliverable D4.2. Workflow development

CO

uDevOps

November 2023

Abstract

This is the accompanying document of Deliverable D4.2 of the uDevOps
project, entitled “Workflow development”, with reference to the
development of risk different assessment techniques. The type of the
deliverable is marked as Other, and is made up of software artifacts, along
with this accompanying document. The implemented artifacts support
the integrated risk assessment and mitigation strategies described in the
deliverable D4.1. The artifacts are made available on the project website
www . udevops . eu, as well as on the following GitHub repository:
https://github.com/uDEVOPS2020/Risk_Assessment_Mitigation.
git

and at the linked Zenodo repository:

https://doi.org/10.5281/zenodo. 10422810, indexed by OpenAIRE

https://github.com/uDEVOPS2020/Risk_Assessment_Mitigation.git
https://github.com/uDEVOPS2020/Risk_Assessment_Mitigation.git
https://doi.org/10.5281/zenodo.10422810

CcO

uDevOps

1 INTRODUCTION

This document describes the artifacts implemented for risk assessment
and mitigation techniques under development for the Microservice quality

assessment, work package 4.

Before presenting the single artifacts’ repositories, here we first briefly
describe how one could combine estimates obtained with different methods
among the implemented ones. The strategies presented in D4.1 ("Business
risk assessment techniques ”) adopt different techniques able to provide an
estimate of probability of failure (PFD). In almost all the cases, this is derived
by a frequentist strategy, where the number of observed failures is used by an
estimator depending on how the sample was selected. In one case, we have
also explored the use of a Bayesian strategy, with the advantage of having a

simple way to update the estimates as more data becomes available.

The choice of the method to adopt depend on many aspects,
including the information available (e.g., auxiliary variable for sampling), the

uncertainty on the operational profile, how often the profile changes, the

CcO

uDevOps

proneness of the system to fail (e.g., with few failures, a Bayesian approach

may be better in avoiding overestimation), etc.

Regardless the estimators chosen, a simple yet effective policy to
combine the estimates is by combining them. Every estimate is associated
with a variance of the estimator, and this variance is directly related to
the confidence we can put in the estimation (higher variance, less stable
estimate, little confidence). Therefore, given a quality attribute (for instance
Reliability R = 1 — PF'D), a simple way to combine two estimates R;
and R, obtained with two distinct methods is to take the weighted average
fil -wy +]%2 - w9, Where the weights w; and ws are the variances of the

estimate w; = V(I{’l), Wy = V(ég).

The result from these techniques can be combined with the failure
impact qualitative scale reported in D4.1to give the risk estimate. Moreover,
the risk mitigation techniques defined in the last part of D4.1 serve to reduce
the failure probability, hence the risk, with reference to several quality

attributes of interest, primarily reliability, performance and energy.

The focus of this document is to accompany the artifacts implemented
and made available for all such techniques. Each of the following sections
reports the instructions for using the technique and reproduce the results
reported in the published papers and recalled in Deliverable D4.1. The
artifacts will be extended/integrated in the rest of the project, as the

Consortium will advance with WPs5.

CcO

uDevOps

All the artifacts are available on the project website www.udevops. eu,
as well as on the following GitHub repository:
https://github.com/uDEVOPS2020/Risk_Assessment_Mitigation.
git
and at the linked Zenodo repository:

https://doi.org/10.5281/zenodo.10422810, indexed by OpenAIRE

https://github.com/uDEVOPS2020/Risk_Assessment_Mitigation.git
https://github.com/uDEVOPS2020/Risk_Assessment_Mitigation.git
https://doi.org/10.5281/zenodo.10422810

CcO

uDevOps

2 RISK ASSESSMENT

241 RELIABILITY-RELATED ASSESSMENT

2.1.41 DNN ASSESSMENT AND IMPROVEMENT CYCLE (DAIC)

This artifact is the replication package related to Guerriero et al. (2023b)
discussed in section 3.2.1 of Deliverable 4.1. In this repository, the code to
repeat the experiments is available. We reported the datasets to completely

reproduce the experiments on MNIST.

Thefile “results.csv” contains all the raw results discussed in the paper.

Requirements To run the experiments it is required to install Python 3 and
all the requirements reported in the requirement.txt file. DNN-OS requires

the installation of KNIME (https://www.knime.com/downloads).

Execution To execute all the experiments run the command “sh

run_complete.sh”. All the pre-trained models are available. The script

(https://www.knime.com/downloads)

CcO

uDevOps

2.1. RELIABILITY-RELATED ASSESSMENT

will stop the execution at each cycle to allow the execution of DNN-OS on
KNIME. To execute DNN-OS it is required to set the path to the desired
training, validation, and test sets automatically generated by the Python
script. The operational accuracy estimate can be read as the output of the

last “column rename” block.

The experiments with SelfChecher can be executed by running the
code available in the replication package available athttps://github. com/

self-checker/SelfChecker.

2.1.2 Image Classification Oracle Surrogate (1COS)

This artifact corresponds to the implementation of ICOS according to
Guerriero et al. (2023a) as described in section 3.2.1 of Deliverable 4.1. In
this repository, the code to repeat the experiments on MNIST, CIFAR10, and

CIFAR100 is available.

The Python code in MNISTCNNSs.py, CIFAR10CNNSs.py, and
CIFAR100CNNs.py can be executed to generate the .csv files containing
the training, validation, and test sets ready to be submitted to ICOS. All
the requirements needed to execute the Python code are listed in the

requirements.txt file.

The implementation of ICOS provided needs an installation of KNIME
(v4.0.0). After the import of the .knar file into the KNIME workspace, the

.csv file generated can be inserted in input in the “CSV Reader” blocks

https://github.com/self-checker/SelfChecker
https://github.com/self-checker/SelfChecker

CcO

uDevOps

2.2. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

according to their tags. With the “Double Configuration” blocks the
minimum confidence and support can be set. The “CSV Writer” blocks can
be configured with the path where the CSV containing the output of the
testing session can be saved. The “Java Snippet” block, named “IDI”, inside
the “ICOS” metanode can be used to switch the partitioning criterion by
uncommenting the corresponding code. The “Partitioning” blocks, “Node
15" and “Node 77" (inside the “CRO” metanode), can be used to change the
test set size for ICOS and CRO respectively.

2.2 PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

2.2.1 Computer Vision

This repository contains the replication package of the paper by Hampau

et al. (2022) discussed in section 3.3.2 of Deliverable 4.1.

The full dataset including raw data, data analysis Python scripts, and

automatizing scripts produced during the study are available.

Running the experiment:

e On local machine run: python3 main.py

e One can customise the number or type of treatments by editing the

rows.csv file

Post-requisites:

CcO

uDevOps

2.2. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

e For new raw data, manually copy all logs to raw_logs folder, following

the directory tree format from the replication package

2.2.2 Android Apps

This artifact implements the replication package and provides the dataset
of the paper by Horn et al. (2023) for MOBILESoft 2023 discussed in section

3.3.2 of Deliverable 4.1.

Data analysis From the data generated by the experiment or provided
in the archive ‘raw_results.tar.gz' the dataset is compiled using the script

‘experiment/utils/run_to_csv.py".

Replicating the experiment The original readme of Android Runner can
be found in “./ANDROID-RUNNER.md”. Follow the setup instructions for
Android Runner before you continue. The experiment itself and specific
instructions can be found under “./experiment/README.md"”. To perform
the replication, three main steps are required: 1. Obtain the versions of
the APKs of the apps listed “./experiment/apks/summary.txt” (due to legal
reasons, we cannot provide them directly) 2. Install the prerequisites
relating to Android Runner, app subjects and R 3. Run the experiment using
Android Runner 4. Compile the dataset from the raw results and perform

the data analysis

CcO

uDevOps

2.2. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

Overview of the experiment setup Figure 2.1 shows the components of the

experiment setup.

/ GNU/Linux 5 system \

Android Runner

Android device

——Measurements— [ADB]

USB [systrace

Subject = : :
(Native apps, web #—Instrumentation— [Buﬂt—m plugins (androld,}

apps in Chrome) batterystats, frametime)

Access remote resources Experiment

(configuration, scripts)

Internet
over Wi-Fi

Remote resource

Figure 2.1. Experiment setup

[Network plugin 1

Our experiment

[Bash utilities]

-

2.2.3 loT

This artifact contains the replication package and dataset of the paper

published at EASE 2023 (Research track) by Wagner et al. (2023) presented

in section 3.3.2 of Deliverable 4.1.

This study has been designed, developed, and reported by the

following investigators:

e Linus Wagner

e Maximilian Mayer

CcO

uDevOps

2.2. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

e Andrea Marino
e Alireza Soldani Nezhad
e Hugo Zwaan

e |vano Malavolta

For any information, interested researchers can contact us by sending
an email to any of the investigators listed above. A full replication package,
including the software setup for conducting our experiments, benchmarks,
an Ansible and Docker setup package, the final dataset generated, and scripts

to analyse and visualize the resulting data are described below.

The ‘experiment-runner @ 1613d3d‘ is based on *Robot Runner*
introduced by Swanborn and Malavolta (2021) in “Robot Runner: A
Tool for Automatically Executing Experiments on Robotics Software”
(https://doi.org/10.1109/ICSE-Companion52605.2021.00029), and

was forked from https://github.com/S2-group/experiment-runner.

Each of the folders listed above is described in detail in the remainder
of thisreadme. Crucially, the USAGE.md describes how to use this replication

package in detail.

Analysis This folder contains the data that has been generated through our
experiments, scripts to process, analyse, and visualize this data, and the final

visualization results.

https://doi.org/10.1109/ICSE-Companion52605.2021.00029
https://github.com/S2-group/experiment-runner

CcO

uDevOps

2.2. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

The data in the TSV file has been generated from several results and
different experimental runs. The data was merged by hand, however, this is

the only manual interaction within this process.

Applications This folder contains the benchmarks used in our experiments.
Four different computational problems, implemented in four different
programming languages. All benchmarks are taken from “The Computer
Language Benchmarks Game” (https://benchmarksgame-team.pages.
debian.net/benchmarksgame/index.html) and, if needed, adapter for
our purposes. They do not use multi-threading, as WASM does not support

that out-of-the-box.

Environment This folder contains an Ansible setup used to automatically
deploy the experiment setup on multiple network devices at once, and a

Docker setup to compile our benchmarks to WASM executables.

The following tools are installed and used through this environment

setup:

e Python (https://www.python.org/)
e Docker (https://www.docker.com/)

e Time (https://man7.org/linux/man-pages/manl/time.1.
html)

10

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://www.python.org/
https://www.docker.com/
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/time.1.html

CcO

uDevOps

2.2. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

e PowerlJoular (https://github.com/joular/powerjoular)

e experiment-runner (https://github.com/marinoandrea/

experiment-runner)
e Wasmer (https://wasmer.io/)

e Wasmtime (https://wasmtime.dev/)

Experiment Runner Our experiment setup uses the experiment-
runner(https://github.com/S2-group/experiment-runner) to
execute experiments in a controlled environment. This experiment runner
comes with its own documentation, which can be found in the corresponding

repository. However, we modified it to fit our needs.

2.2.4 Monitoring tools

This artifact represents the replication package for the paper by Dinga et al.

(2023) discussed in section 3.3.2 of Deliverable 4.1.

This repo contains the raw data and analysis scripts related to all the
activities carried out for the experimentation. It also contains the TrainTicket

benchmark system with the integration of four monitoring tools.

This study has been designed, developed, and reported by the

following investigators:

11

https://github.com/joular/powerjoular
https://github.com/marinoandrea/experiment-runner
https://github.com/marinoandrea/experiment-runner
https://wasmer.io/
https://wasmtime.dev/
https://github.com/S2-group/experiment-runner

CcO

uDevOps

2.2. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

e Madalina Dinga (VU Amsterdam)

¢ |vano Malavolta (VU Amsterdam)

e Luca Giamattei (University of Naples Federico Il)

e Antonio Guerriero (University of Naples Federico Il)

e Roberto Pietrantuono (University of Naples Federico Il)

For any information, interested researchers can contact us by sending

an email to any of the investigators listed above.

Instructions for replicating the experiment In the following, the required

steps for replicating the experiments are reported:

1. Experiment execution Experiment-runner is used for automating
the execution of the experiments. Infrastructure setup. The experiment
uses the version of TTS available in the [TrainTicket](./TrainTicket) folder.
It includes the integration of the TTS with a selection of four monitoring
tools (ELK stack, Netdata, Prometheus and Zipkin) and the set of a set
of 34 load test scripts generated with [Ké](https://ké.io/). Please check
[this readme](./TrainTicket/readme.md) file for the detailed instructions
about how to setup and deploy the various versions of the TTS used in this

experiment.

The pipeline can be triggered using Experiment-Runner with the

12

CcO

uDevOps

2.2. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

‘RunnerConfig-monitoring.py‘ specification. Please follow the instructions

in the project README.

Required software:

e **K6** isrequired to be installed on the machine for running the Ké

load test scripts.
e Python3, required by Experiment-Runner

e Experiment-Runner (https://github.com/S2-group/experiment-runner)

- Note that the framework is not supported on Windows.

2. Data analysis Data processing and data analysis scripts for data
obtained during the experiment performed on the Train Ticket system
(https://github.com/FudanSELab/train-ticket) are available in the

data folder.

13

https://github.com/S2-group/experiment-runner
https://github.com/FudanSELab/train-ticket

CcO

uDevOps

3 RISK MITIGATION

341 LACUNA-EVALUATION

This repository contains all the material needed to replicate an experiment
on Lacuna V2 (https://github.com/S2-group/Lacuna) evaluation. This
tool allows the removal of JavaScript dead code with 4 different optimization
levels. The goal of the experiment is to evaluate the impact of this smell on
various run-time metrics, measured in mobile web applications on Android

smartphones.

The collected metrics and the tools used to measure them, are the

following:

e Energy consumption
- Energy (J) — Trepn plugin
e Performance

- CPU usage (%) — Trepn (https://github.com/S2-group/

14

https://github.com/S2-group/Lacuna
https://github.com/S2-group/Lacuna-evaluation/tree/main/android-runner/AndroidRunner/Plugins/trepn
https://github.com/S2-group/Lacuna-evaluation/tree/main/android-runner/AndroidRunner/Plugins/trepn

CcO

uDevOps

3.1. LACUNA-EVALUATION

Lacuna-evaluation/tree/main/android-runner/

AndroidRunner/Plugins/trepn) plugin
- Memory usage (MB) — Trepn plugin
- Loading time (ms) — JS snippet in each web page

- First Paint (ms) — JS snippet in each web page using the
perfumelS (https://zizzamia.github.io/perfume/)

library

- First Contentful Paint (ms) — JS snippet in each web page
using the perfumelS (https://zizzamia.github.io/

perfume/) library
e Network usage

- Number of packets — mitmproxy (https://mitmproxy.

org/)

- Bytes transferred (KB) — mitmproxy (https://mitmproxy.

org/)

Content All the data and tools required for the replication of the

experiment are provided in the following folders:

e LacunaV2-master (https://github.com/S2-group/Lacuna-evaluation/

tree/main/LacunaV2-master) - Tool used to remove JavaScript

15

https://github.com/S2-group/Lacuna-evaluation/tree/main/android-runner/AndroidRunner/Plugins/trepn
https://github.com/S2-group/Lacuna-evaluation/tree/main/android-runner/AndroidRunner/Plugins/trepn
https://github.com/S2-group/Lacuna-evaluation/tree/main/android-runner/AndroidRunner/Plugins/trepn
https://zizzamia.github.io/perfume/
https://zizzamia.github.io/perfume/
https://zizzamia.github.io/perfume/
https://mitmproxy.org/
https://mitmproxy.org/
https://mitmproxy.org/
https://mitmproxy.org/
https://github.com/S2-group/Lacuna-evaluation/tree/main/LacunaV2-master
https://github.com/S2-group/Lacuna-evaluation/tree/main/LacunaV2-master

CcO

uDevOps

3.1. LACUNA-EVALUATION

dead code from the subjects

e android-runner (https://github.com/S2-group/Lacuna-evaluation/
tree/main/android-runner) - Tool adopted to automate the

execution of the experiment on the Android device

e data (https://github.com/S2-group/Lacuna-evaluation/
tree/main/data) - Raw and aggregated data obtained from the
execution of the experiment, including also the raw data about the

count of the number of functions in each subject

e data_analysis (https://github.com/S2-group/Lacuna-evaluation/
tree/main/data_analysis) - Script adopted for data processing

and analysis

e scripts (https://github.com/S2-group/Lacuna-evaluation/
tree/main/scripts) - Aggregation scripts adopted on raw data

and scripts used on the subjects

e subjects (https://github.com/S2-group/Lacuna-evaluation/
tree/main/subjects) - Web Applications executed on the mobile
device during the experiment. For each subject there are 4 different

versions, one for every optimization level in Lacuna V2.

e TodoMVC (https://github.com/S2-group/Lacuna-evaluation/
tree/main/subjects/TodoMVC) - 20 web apps from the [TodoMVC

16

https://github.com/S2-group/Lacuna-evaluation/tree/main/android-runner
https://github.com/S2-group/Lacuna-evaluation/tree/main/android-runner
https://github.com/S2-group/Lacuna-evaluation/tree/main/data
https://github.com/S2-group/Lacuna-evaluation/tree/main/data
https://github.com/S2-group/Lacuna-evaluation/tree/main/data_analysis
https://github.com/S2-group/Lacuna-evaluation/tree/main/data_analysis
https://github.com/S2-group/Lacuna-evaluation/tree/main/scripts
https://github.com/S2-group/Lacuna-evaluation/tree/main/scripts
https://github.com/S2-group/Lacuna-evaluation/tree/main/subjects
https://github.com/S2-group/Lacuna-evaluation/tree/main/subjects
https://github.com/S2-group/Lacuna-evaluation/tree/main/subjects/TodoMVC
https://github.com/S2-group/Lacuna-evaluation/tree/main/subjects/TodoMVC

3.1. LACUNA-EVALUATION

CcO

uDevOps

project](https://todomvc.com/)

lacunaWebPages (https://github.com/S2-group/Lacuna-evaluation/

tree/main/subjects/lacunaWebPages) - 16 popular web pages
which are part of the [Tranco](https://tranco-list.eu/) list.
This folder contains also the set of all 150 potentially-usable subjects

from the Tranco list

Required software

Http-server (https://www.npmjs.com/package/http-server)

(‘npm install http-server’)

Pluginbase (https://pypi.org/project/pluginbase/) (‘pip

install pluginbase’)

BeautifulSoup (https://pypi.org/project/beautifulsoupd/)
(‘pip install beautifulsoup4’)

For [AndroidRunner](https://github.com/S2-group/android-runner):
Python 3 (https://www.python.org/downloads/)

Android Debug Bridge (https://developer.android.com/

studio/command-1line/adb) (‘sudo apt install android-tools-adb‘)

monkeyrunner (https://developer.android.com/studio/

test/monkeyrunner) (‘sudo apt install monkeyrunner?)

17

https://todomvc.com/
https://github.com/S2-group/Lacuna-evaluation/tree/main/subjects/lacunaWebPages
https://github.com/S2-group/Lacuna-evaluation/tree/main/subjects/lacunaWebPages
https://tranco-list.eu/
https://www.npmjs.com/package/http-server
https://pypi.org/project/pluginbase/
https://pypi.org/project/beautifulsoup4/
https://www.python.org/downloads/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner

CcO

uDevOps

3.1. LACUNA-EVALUATION

e JDK 8 (https://openjdk.java.net/install/) (‘sudo apt-get
install openjdk-8-jre’)

e Ixml (https://1xml.de/installation.html) (‘sudo apt install

python-Ixml‘)

For Mitmproxy, check https://docs.mitmproxy.org/stable/

overview-installation/.

Setup The following commands have already been executed on the

subjects in this repository.

Create the additional variants for each subject Apply JavaScript dead
code removal to the angularjs_require subject, using the analyzers tajs and

dynamic and optimization level 2

node LacunaV2-master/lacuna ./TodoMVC/Ivlo/angularjs_require -a

tajs dynamic -o 2 -d ./TodoMVC/Ivl2/angularjs_require -f

Add JavaScript snippet to each subject This command is executed
on all variants of the subjects to add a JavaScript snippet that allows
the measurement of loading time, fp, and fcp metrics using the perfumelS
library. The file AddJS.py is in the scripts (https://github. com/S2-group/

Lacuna-evaluation/tree/main/scripts) folder.

python3 AddJS.py

18

https://openjdk.java.net/install/
https://lxml.de/installation.html
https://docs.mitmproxy.org/stable/overview-installation/
https://docs.mitmproxy.org/stable/overview-installation/
https://github.com/S2-group/Lacuna-evaluation/tree/main/scripts
https://github.com/S2-group/Lacuna-evaluation/tree/main/scripts

CcO

uDevOps

3.1. LACUNA-EVALUATION

Run the experiment To host the subjects on the machine, execute the

following command in the directory where you have ‘subjects":
Hosting the current directory on port 2020
http-server -p 2020
To be able to access the localhost websites on the mobile device:
Enter the portnumber that the websites are hosted on
adb reverse tcp:2020 tcp:2020

To collect details of the packets transferred for each run of each
subject, execute the command below and add a proxy to the network that
the mobile device is connected to. Make sure that the port used for the
proxy on the mobile device is the same as the one used in the command

below.

Run mitmproxy on port 5050 and save the flow file in a text file such

as flowFileName
mitmproxy -p 5050 -set save treamyile = flowFileName

To execute AndroidRunner a configuration file is needed. Make sure
that the path to monkeyrunner in the config file used, points to the respective

location on your machine.

The config file we used is in /androtd-runner/ ezamples/ trepn/

config_webfinal. json

19

/android-runner/examples/trepn/config_webfinal.json
/android-runner/examples/trepn/config_webfinal.json

CcO

uDevOps

3.1. LACUNA-EVALUATION

python3 android-runner path/to/config

Aggregateresults To be able to analyze the results of the metrics collected,
we need to aggregate the results for each variant of each metric into a

separate csv file.

The command below aggregates the results for the loading time, fp

and fcp metrics placed within the ‘results_perfumelS‘ directory.
Aggregate loading time, fp, fcp
python3 aggregate_perfumelS.py path/to/results_perfumelS

To aggregate the mitmproxy results, first we need to convert the flow
text file(s) generated into csv file(s). If the experiment produced multiple text

flow files, execute the following command for each file.
Convert the text flow file into a csv file
python3 logfileToCSV.py flowFileName flowFileName.csv

Now, to aggregate the mitmproxy results, make sure that the
perfumelS metrics are aggregated first. The reason for this is that
aggregating mitmproxy results uses the starting time of each run, which is

aggregated in the directory ‘aggregated_perfumelS"’.

The command below aggregates the mitmproxy results that are in a
folder with only the csv flow files, such as ‘results_mitmproxy/’, given the

directory ‘aggregated_perfumelS‘ with the aggregated starting time.

20

CcO

uDevOps

3.2. MICRO2VEC

Aggregate packets transferred and bytes transferred

python3 aggregate_mitmproxy.py path/to/results_mitmproxy
path/to/aggregated_perfumelS

3.2 MICRO2VEC

This repository accompanies the submission of the manuscript: Micro2vec:
Anomaly Detection in Microservices Systems by Mining Numeric

Representations of Computer Logs
co-authored by

Marcello Cinque*, Raffaele Della Corte*, and Antonio Pecchia**
*Universita degli Studi di Napoli Federico Il **Universita degli Studi del

Sannio
to JOURNAL OF NETWORK AND COMPUTER APPLICATIONS.
CONTENT:

This repo contains the following folders/sub-folders:

e Training

e Test
- AUTH
- DEL

21

CcO

uDevOps

3.2. MICRO2VEC

- DOS

KILL

NORMATIVE

- REG

Each folder/sub-folder contains the following set of 13 logs (*):

e astaire.txt

e bono.txt

e cassandra.txt

e chronos.txt

o ellis.txt

e homer.txt

e homestead.txt

e homesteadaccess.txt
e homesteadprov.txt

o ralfitxt

e ralfaccess.txt

22

CcO

uDevOps

3.2. MICRO2VEC

e sprout.txt

e sproutaccess.txt

NOTE:

1) 'Training’ logs are used to tune the detection approach presented in

the paper.

2) 'Test’ logs are collected within normative/anomalous events. They
are used to test the proposed approach, and they are collected by means of

controlled experiments.

3) Training-Test logs are collected with independent runs of the system

in hand.

REGULAR EXPRESSIONS This repository also provides the regex.txt file,
which contains regular expressions used in our study as well as for replication

purposes.

(*) Some files are missing due to GitHub space limitations. Contact us

in case. CONTACT:

For any further information please contact the Authors: macinque@unina.it,

raffaele.dellacorte2@unina.it, antonio.pecchia@unisannio.it

23

CcO

uDevOps

REFERENCES

Dinga, M., Malavolta, I., Giamattei, L., Guerriero, A., and Pietrantuono, R. (2023). “An empirical
evaluation of the energy and performance overhead of monitoring tools on docker-based
systems.” Service-Oriented Computing, F. Monti, S. Rinderle-Ma, A. Ruiz Cortés, Z. Zheng, and
M. Mecella, eds., Cham, Springer Nature Switzerland, 181-196.

Guerriero, A., Lyu, M. R., Pietrantuono, R., and Russo, S. (2023a). “Assessing operational accuracy of

cnn-based image classifiers using an oracle surrogate.” Intelligent Systems with Applications, 17,
200172.

Guerriero, A., Pietrantuono, R., and Russo, S. (2023b). “Iterative assessment and improvement
of dnn operational accuracy.” 2023 IEEE/ACM 45th International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER), Los Alamitos, CA, USA, IEEE Computer
Society, 43-48, <https://doi.ieeecomputersociety.org/10.1109/ICSE-NIER58687.2023.00014>
(may).

Hampau, R., Kaptein, M., Emden, R., Rost, T., and Malavolta, I. (2022). “An empirical study on the
performance and energy consumption of ai containerization strategies for computer-vision tasks
on the edge.” 50-59 (06).

Horn, R., Lahnaoui, A., Reinoso, E., Peng, S., Isakov, V., Islam, T., and Malavolta, I. (2023). “Native vs
web apps: Comparing the energy consumption and performance of android apps and their web
counterparts.” 2023 IEEE/ACM 10th International Conference on Mobile Software Engineering and
Systems (MOBILESoft), 44-54.

Swanborn, S. and Malavolta, . (2021). “Robot runner: A tool for automatically executing experiments
on robotics software.” 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), 33-36.

Wagner, L., Mayer, M., Marino, A., Soldani Nezhad, A., Zwaan, H., and Malavolta, I. (2023).
“On the energy consumption and performance of webassembly binaries across programming
languages and runtimes in iot.” Proceedings of the 27th International Conference on Evaluation
and Assessment in Software Engineering, EASE '23, New York, NY, USA, Association for Computing
Machinery, 72-82, <https://doi.org/10.1145/3593434.3593454>.

24

	Introduction
	Risk Assessment
	RELIABILITY-RELATED ASSESSMENT
	DNN ASSESSMENT AND IMPROVEMENT CYCLE (DAIC)
	Image Classification Oracle Surrogate (ICOS)

	PERFORMANCE- AND ENERGY-RELATED ASSESSMENT
	Computer Vision
	Android Apps
	IoT
	Monitoring tools

	Risk mitigation
	Lacuna-evaluation
	Micro2vec

	References

