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Abstract

This document reports the results of Deliverable D4.1 of the µDevOps
project, entitled “Business risk assessment techniques”. The type of the
deliverable is marked as Report, and its dissemination level is Public.
The document will be made available through the project’s website,
https://udevops.eu/.

The document describes the strategies we developed to provide
a measure of the risk associated with the failure of a system in meeting
quality-of-service (QoS) attributes for microservices, namely reliability,
performance (and additionally energy consumption), security. These include
means to assess the risk and measures to mitigate the risk, both targeted
in this report. The report describes broadly about all the strategies that
we have implemented for all the quality attributes we are targeting, while
pointing to the project’s papers derived from such techniques for further
details.
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1 INTRODUCTION

Quality assurance activities aim at exposing potential failures of the system
before they impact the user experience in operation, and take action
to prevent or mitigate them. The quality requirements we are targeting
pertain to reliability, performance, security of the system, and, in addition,
to energy consumption, which is becoming a major source of cost when
consumption exceeds the expectation. In the rest of this document the term
failures, therefore, refer to deviations from functional and non-functional
requirements (i.e., from the expected behaviour) – namely, the system is
said to fail when it does not satisfy these requirements, including latent
requirements on the above-mentioned attributes (reliability, performance,
security, energy consumption).

The goal of quality assurance is not only related to the possible failures
of the system in satisfying its requirements and quality goals. The impact

that these failures have can vary a lot from context to context. A failure of
a functionality, even if technically severe (e.g., a crash), may not impact the
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revenue or reputation of the company if it impacts on a small number of
users, or if the damages it causes are not dangerous for the environment or
for other people (like in critical systems).

Therefore, a more complete measure to take into account is the risk

associated with the failure of a functionality or of an entire system. In the
following report, we discuss about how the risk can be characterized in a
microservice-DevOps context, how it can be assessed and how it can be
mitigated. Most of the techniques we implemented focus on assessing or
improving the probability of failure (with respect to the above requirements)
of a functionality, which, once combined with qualitative metrics of impact,
give a more complete measure concerning the risk associated with the
failure.

In the rest of the document: Section 2 will present the main set
of risk metrics relevant for microservice-based software systems (risk
measurements). These all have the form of a product between the
probability of failure and a metric of impact that this failure would have,
depending on the context. This captures both the possibility that a failure
occurs and the assessment of what happens if the failure occurs. It is
important to recall that in the uDevOps project, the focus is on: reliability,
performance, and security quality attributes. In addition, we are also caring
about energy consumption and, more generally, about sustainability as
further quality attribute. Therefore, as said, the term failure is generically
meant as any event that cause any of the above quality objective to be
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negatively affected.
Section 3 will present the techniques developed for risk assessment.

Sampling-based strategies developed in WP3 will be the basis to assess both
the probability of failures (in terms of probability of failure on a demand

(PFD)) and the impact measure when the historical data is available.
Section 4 presents the strategies for the mitigation of the risk

(risk mitigation). These range from testing and debuggging, aimed at
exposing failures and then correct the source of the failure, to following
good engineering practices that should avoid the introduction of faults or
inefficiency causes in the system.
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2 RISK MEASUREMENT

In the context of software development, the concept of risk is often
associated with the Spiral model by Boehm , which is a risk-driven model.
This model is a cyclic, iterative model for software development that
involves a risk-driven approach to developing products. The model defines
a framework for continuous risk management throughout the product life
cycle. It foresees a series of cycles – hence the term spiral - each of which
focuses on developing a set of requirements or user needs, enhancing the
product incrementally; the focus of each spiral is on mitigating the risks. In
each spiral there is a phase called risk analysis where all the risks associated
with development and operation are identified, such as technical, financial,
market-related, operational, and/or environmental risks. These risks need
to be systematically assessed and mitigated. As a sort of meta-model, this
model can be used in conjunction with any other development model, like
the agile ones used for microservice-based systems. Relevant to our project
is the concept of risk, which we encompass in our quality framework as
enhancement of attributes like reliability, performance, security, energy
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efficiency.
A specific focus on quality-related aspects in software development

driven by the concept of risk is put by risk-based testing Felderer and
Schieferdecker (2019). Risk-based testing (RBT) is a testing approach
which considers risks of the software product as the guiding factor to
support decisions in all phases of the test process According to the ISTQB
Standard glossary (IST), a risk is a ”factor that could result in future negative
consequences and is usually expressed by its likelihood and impact”.

Risk management comprises the core activities risk identification, risk
analysis, risk treatment, and risk monitoring (AS).

The activities risk identification and risk analysis are often collectively
referred to as risk assessment, while the activities risk treatment and risk
monitoring are referred to as risk control.

Risk-based testing uses risk (re-)assessments to steer all phases of the
test process: test planning, test design and implementation, test execution,
test evaluation and monitoring of key metrics to assess the effect of risk
treatment/mitigation strategies put in place.

In this context, risk is the product of these two main factors: likelihood
and impact. The former tells about how likely it is for a risk to happen, and is
often quantified by the probability of an operational failure to occur or, more
simply, by rough categories of high, medium or low occurrence chance; the
latter measures how serious the consequences could be if the risk actually
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occurs, typically assessed in a scale of consequences. These concepts are also
used in safety-critical systems, in the functional hazard assessment phase 1
where the ”impact” depends on the hazards that a failure and/or an external
event could cause on the environment. Techniques like failure mode and
effect analysis (FMEA) are used in this case to anticipate the potential failures
and their expected effect.

The type of risk relevant for a software system clearly depends on
the domain. Generally speaking, based on what said above, any risk can be
seen as the probability that an undetected fault reaches the interface (i.e.,
becomes a failure) and have a negative impact on the user of a system.

Failures are considered here as any deviation of a delivered service
from the intended service a system is designed for; this includes functional
and non-functional requirements, being reliability, performance, security
and energy efficiency the ones we put the focus on. As we deal with
service-based systems, we can measure the probability of failure by a
discrete metric; a typical metric is Probability of Failure on a user Demand

(PFD) . Most of work we have done is about how to estimate and how to
reduce this PFD by means of testing.

Given the PFD, what characterizes the risk is the metric used for the
impact. The impact in turns depend on the failure mode, namely the type of
failure, and on its effect, namely on the damage it causes in terms of, e.g.,

1https://www.eurocontrol.int/tool/safety-assessment-methodology
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direct cost caused by the failure (loss of money due to unjustified energy
consumed), or indirect impact on cost caused by time-related problems
(unmet deadlines), and by poor quality (user satisfaction, damage to
environment or even to human life in critical systems). The latter dimension
of effect need to consider not only what is the damage, but also who is
affected by the damage and to what extent (e.g., how many users).

Hence the resulting risk combines:
• Failure occurrence, i.e., the PFD
• Failure mode, i.e., what type of failure
• Failure effect, i.e., what is the damage, who is affected and to what

extent.
Table 2.1 report the risk matrix that schematizes the dimensions to

consider in order to define the risk. For instance, for a performance-related
mode of failure affecting the subscribed users of the system and that
undermines the user satisfaction, engineers should assign a relative weight.
By giving weights to all the combinations of interests, a relative scale will
be defined. This, normalized in [0,1] or in any convenient scale, will be
multiplied by the PFD ro derive the risk measure.

Looking at the three aspects defined above:
As for the failure occurrence, we rely on the PFD concept and use testing
and debugging to assess and mitigate it. This will be described in the next
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Failure mode Effect (Who) Effect (What type of damage)

Reliability System (classes of) users User satisfaction
Performance (Classes of) users of a function Loss of money
Security Physical environment (including people) Physical damage
Energy Developer company Loss of company money

Unmet deadlines
Table 2.1. Dimensions to consider to define risk

Sections.
As for the failure mode, one needs to distinguish failures according

to a severity scale. For instance, a crash of the system could be weighted
differently from a simply slowing down or of a value failure, depending on
the context. While common failure mode classification schemes could be
customized (e.g., crash, hangs, value failure and time failures Powell (1992)),
we adhere to the quality requirements we are targeting: reliability-related
failures (distinguished in crash, hang, value failure), performance-related
failures (including time-related failures like slow response time, but also
pertaining to the use of resources such as excessive memory consumption
and/or progressive memory consumption), security-related failures (e.g.,
distinguished by the type of vulnerability exploited and the damage it
may cause, e.g., loss of user’s private data (hence loss of confidentiality),
exhaustion of resources via DNS-like attacks, loss of integrity of data), energy-
related failures (total energy consumption or unjustified, progressive, energy
consumption with time).
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As for the effect, this clearly depends on the application domains.
Some possible classes of metrics are listed below combining who is affected
(classes of system users, users of a functionality, the surrounding physical
environment, the company) with the type of damage caused. Damages could
be roughly classified as related to the user satisfaction, loss of user money,
physical damages, loss of company money. Many other combinations are
possible:

• User-based. Metrics focusing on the effect of a failure in terms of
(poor) quality perceived by the user, hence the impact in terms
of user satisfaction. For instance: number of users affected by

the failure, which can be distinguished by classes with different
weights (e.g., number of subscribers vs number of guests, with
a greater weight assigned to the former) – this entails assessing
the operational profile of the system, namely what parts of the
systems the users (of a specific class) exercise more. Services of the
system that may are of more value (hence, that used more and by
higher-weighed users) should receive more attention during testing.

• Functionality-based: given the same users affected, some functions
could lead to more damages for instance in terms of cost, e.g.,
because the deal with a critical task (e.g., money transactions).
Therefore weights are assigned to functionalities to prioritize their
test. This also requires a definition of the operational profile, and
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the these metrics cab ne used in conjunction with the previous ones:
weights could be assigned to any user class/functionality pair. It
is important to stress that the operational profile is captured, in a
uDevOps context, in a continuous manner through monitoring. In
the project, we have focused on monitoring tools for uDevOps-based
systems and we have exploited monitoring (and the operational
profile) in the definition of testing techniques. Section 3 and 4
elaborate more on this

• Damage- and cost-based, external: the user should define metrics
or give weights in a scale to assess the damage that every failure
mode can cause, e.g., to the environment, to the users to other
systems. This includes both physical damages and damages that can
be quantified by a cost (e.g., loss of data). These are particularly
important for safety- or mission/business-critical systems.

• Damage- and cost-based, internal: metrics classifying the
damage/cost brought to the company developing the system;
for instance, excessive consumption of energy, loss of internal data.

• Time-based: metrics reporting about the unmet deadlines (and the
consequent cost). These are heavily affected by the internal practices
put in place to improve the quality of the system (and reduce the
quality-related risk): a very expensive testing technique could cause
delays in the process, but a poor technique could expose to technical
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quality-related risks. Therefore, cost-effectvie techniques are needed
to mitigate this risk. This is discussed in the upcoming Sections 3 and
4.

The exact set of metrics will depend on the business model of the
applications under development. It is important to remark that these
metrics are not mutually exclusive, but can be considered together. In the
rest of this Deliverable, our focus is primarily on the first two classes (user-
and functionality-based), as more appropriate for the system we are using.
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3 RISK ASSESSMENT

3.1 OVERVIEW

This Section reports the techniques we implemented that support the risk
assessment phase. As discussed in the previous Section, the effect of a
failure is related to the specific domain, therefore we hereafter focused on
the estimation of failure occurrence probability (PFD) or related measures;
we also borrow the concept of operational profiles to fine-tune the estimate
toward the operational PFD. In this way, the technique can be easily applied
by just changing the operational profile, and adapted to different classes
of users of functionalities (see previous Section) hence giving an estimate
considering also who is potentially affected by the failure. The resulting
estimate needs to be combined with a scale of the type of effect (see Table
2.1), strictly depending on the specific application.

We hereafter distinguish between:
• Sateless testing-based estimate, wherein the demands are treated as
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3.1. OVERVIEW

independent from each other.
• Stateful testing-based estimate, where the system architecture is

modelled and the output depends on the sequence of demands.
The techniques we developed refer to different types of systems that

are or can be developed according to a uDevOps paradigm. Besides the
conventional systems, such as web apps or well-known benchmarks like
TrainTicket Zhou et al. (2021), we also have worked on IoT systems (which are
being frequently developed with microservices) and with AI systems using
DNNs for specific tasks (these are gaining spread in uDevOps contexts like
cloud-edge systems, with AI functionalities at the edge level implementing
Tiny ML task). Therefore, all the works we describe hereafter refer to several
type of systems.

Central to both methods is the concept of sampling-based testing,
developed in the Deliverable 3.1 of uDevOps 1. Here the main concepts are
recalled: In sampling-based testing, the objective is to provide an estimate
of the quality attribute of interest that is unbiased (hence, its expectation is
the true value) and efficient (namely, with a minimal variance, that implies
high confidence, or, conversely, with a small number of test cases given a
minimum confidence in the estimate we want to have).

Estimation of the operational profile from monitoring data is already
discussed in Deliverable 3.1, e.g., through the Dirichlet-based estimation

1www.udevops.eu
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3.2. RELIABILITY-RELATED ASSESSMENT

Pietrantuono et al. (2020). Therefore, hereafter it is assumed that an
estiamte of the operational profile is available when required by the
technique.

3.2 RELIABILITY-RELATED ASSESSMENT

3.2.1 Assessment in AI-based systems

The first technique we describe for PFD assessment is with reference to AI-
based systems (e.g. Deep Neural Networks). In this context, the operational
reliability corresponds to the operational accuracy, referred either to a
classification (e.g., number of correctly classified examples) or a regression
task (e.g., average difference between predicted and actual value). The
development context is the transposition of DevOps to ML-based systems:
MLOps.

Deep Neural Networks (DNN) are nowadays largely adopted in many
application domains thanks to their human-like, or even superhuman,
performance in specific tasks. However, due to unpredictable/unconsidered
operating conditions, unexpected failures show up on field, making the
performance of a DNN in operation very different from the one estimated
prior to release. In large part, this is due to the oracle problem, which
impacts the ability to automatically judge the output of the classification,
thus hindering the accuracy of the assessment when unlabeled previously
unseen inputs are submitted to the system.
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3.2. RELIABILITY-RELATED ASSESSMENT

In the life cycle of DNN systems, the assessment of accuracy is typically
addressed in two ways: offline, via sampling of operational inputs, or online,
via pseudo-oracles. The former is considered more expensive due to the
need for manual labeling of the sampled inputs. The latter is automatic but
less accurate.

In the context of the uDevOps project, we contributed by defining
a pseudo-oracle named Image Classification Oracle Surrogate (ICOS), a
technique proposed by Guerriero et al. (2023a) to automatically evaluate
the accuracy in the operation of Convolutional Neural Networks, namely
DNNs for image classification. To establish whether the classification
of an arbitrary image is correct or not, ICOS leverages three knowledge
sources: operational input data, training data, and the ML algorithm.
Knowledge is expressed through likely invariants - properties that should
not be violated by correct classifications. ICOS infers and filters invariants
to improve the correct detection of misclassifications, reducing the number
of false positives. ICOS is evaluated experimentally on twelve CNNs –
using the popular MNIST, CIFAR10, CIFAR100, and ImageNet datasets.
Experimental results show that ICOS exhibits performance comparable to
cross-referencing and self-checking in terms of accuracy, showing higher
stability over a variety of CNNs and datasets with different complexity
and size. ICOS likely invariants are shown to be effective in automatically
detecting misclassifications by CNNs used in image classification tasks when
the expected output is unknown; ICOS ultimately yields faithful assessments
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3.2. RELIABILITY-RELATED ASSESSMENT

of their accuracy in operation. Knowledge about input data can also be
manually incorporated into ICOS, to increase robustness against unexpected
phenomena in operation, like label shift.

Emerging iterative industrial-strength life cycle models for Machine
Learning systems, like MLOps, offer the possibility to leverage inputs
observed in operation not only to provide faithful estimates of a DNN
accuracy but also to improve it through remodeling/retraining actions.
In the context of uDevOps, we have proposed DAIC (DNN Assessment
and Improvement Cycle) Guerriero et al. (2023b), an approach that
combines “low-cost” online pseudo-oracles and “high-cost” offline sampling
techniques to estimate and improve the operational accuracy of a DNN
in the iterations of its life cycle. Preliminary results show the benefits of
combining the two approaches and integrating them into the DNN life cycle.

Detailed results are in Guerriero et al. (2023a) and Guerriero et al.
(2023b).
3.2.2 Stateful assessment

The techniques we describe hereafter use a model to represent sequences
of requests and provide an estimate considering the user profile.

The idea of the first technique is to a novel methodology (called
MIPaRT) and platform to automatically test microservice operations for
performance and reliability in combination (Camilli et al. (2022)). The
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3.2. RELIABILITY-RELATED ASSESSMENT

proposed platform can be integrated into a DevOps cycle to support:
• continuous testing and monitoring by the automatic generation and

execution of performance-reliability ex-vivo testing sessions;
• collection of monitoring data;
• computation of performance and reliability metrics;
• integrated visualization of the results.

Tests are generated based on a behavioural model of the users interacting
with the system under test. The model is defined as a DTMC, where states
and the transition between states can be extracted from historical data.

We apply this approach by operating the platform on an open-source
benchmark. Results show that our integrated approach can provide
additional insights into the performance and reliability behaviour of
microservices as well as their mutual relationships.

This is described in more detail in Deliverable 3.1, and here is just
recalled to have a complete picture.
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3.3. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

3.3 PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

3.3.1 Performance

The technique described in the previous Section presents MIPaRT working
for both reliability and performance. The same strategy is therefore used
to get an assessment of performance-related risk in a stateful manner and
considering the operational profile.

Another technique that we have implemented is for the assessment
of performance degradation over a long execution period – a phenomenon
called runtime software aging Cotroneo et al. (2014). This is applied in the
context of ML-based systems running under low-resource constraints, such
as in a cloud-edge computing where a tiny ML task (e.g., object detection) is
run at the edge nodes, with limited computational capabilities. This is also an
instance of what is called AIoT systems, created according to a microservice-
like style.

Efficient and effective object detection is a key problem in Computer
Vision. Numerous object detection algorithms have been developed, whose
aim is to achieve two conflicting goals, namely accuracy and efficiency, while
being executed in real-time with high robustness. Many of these algorithms
must run for an extended period of time, i.e., in video surveillance or in
self-driving cars – a working condition that make them subject to the risk
of software aging.
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3.3. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

In the uDevOps context, Pietrantuono et al. (2022) analyze the
phenomenon of software aging in state-of-the-art object detection
algorithms. More specifically, we performed long-running experiments
to analyze how software aging manifests under different algorithms,
libraries/implementations, and datasets. We collected both resource
consumption indicators (e.g., free/buffer/cache memory and resident
memory size) and performance-related indicators (e.g., frames per second)
and statistically analyze the presence or absence of aging phenomena,
quantify their extent and assess the difference between various settings
(i.e., algorithms, libraries, datasets).

Results highlighted that every aging indicator used in our experiments
shows resource consumption or performance degradation, regardless of the
algorithm, implementation, or dataset. It is also shown that four out of six
aging indicators, more than 50% of the experiments, manifest aging effects
with a peak of over 95%. Additionally, the results revealed that the algorithm
and dataset factors seem to be less important than the library one (i.e., the
specific implementation).

Additional details can be found in the paper by Pietrantuono et al.
(2022).
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3.3. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

3.3.2 Energy (and performance) assessment

This Section describes the studies we have conducted for energy
consumption measurement along with performance assessment. Energy
consumption monitoring is paramount as it allows for controlling the cost
and detecting possible spikes that could be caused by unintentional faults
or deliberate attacks.

The studies are on, again, computer vision tasks at the edge, mobile
and web apps, and binaries in IoT systems, respectively.

On energy consumption, we also assessed the consumption entailed
by using monitoring tools themselves, which are cornerstones of uDevOps
development.

Computer vision. The rise of use cases of AI catered towards the Edge,
where devices have limited computation power and storage capabilities,
motivates the need for better understating of how AI performs and
consumes energy.
With Hampau et al. (2022) we aim to empirically assess the impact of
three different AI containerization strategies on the energy consumption,
execution time, CPU, and memory usage for computer-vision tasks on the
Edge.
We conduct an experiment with the used containerization strategy as the
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3.3. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

main factor, with three treatments: ONNX Runtime, WebAssembly, and
Docker. The subjects of the experiment are four widely-used computer-
vision algorithms. We then orchestrate a series of runs where we deploy the
four subjects on different generations of Raspberry Pi devices, with different
hardware capabilities. A total of 120 runs (per device) are recorded to gather
data on energy, execution time, CPU, and memory.
We found a statistically significant difference between the three
containerization strategies on all dependent variables. Specifically,
WebAssembly proves to be a valuable alternative for devices with reduced
disk space and computation power.
For computer-vision tasks with limited disk space and RAM memory
requirements, developers should prefer WebAssembly for deployment. The
(non-dockerized) ONNX Runtime resulted to be the best choice in terms of
energy consumption and execution time.

Web apps. Many Internet content platforms, such as Spotify and YouTube,
provide their services via both native and Web apps. Even though those
apps provide similar features to the end user, using their native version or
Web counterpart might lead to different levels of energy consumption and
performance.
In the context of the uDevOps project, with Horn et al. (2023), we aim to
empirically assess the energy consumption and performance of native and
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3.3. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

Web apps in the context of Internet content platforms on Android.
We select 10 Internet content platforms across 5 categories. Then, we
measure them based on the energy consumption, network traffic volume,
CPU load, memory load, and frame time of their native and Web versions;
then, we statistically analyze the collected measures and report our results.
We confirm that native apps consume significantly less energy than their
Web counterparts, with a large effect size. Web apps use more CPU and
memory, with statistically significant differences and large effect sizes.
Therefore, we conclude that native apps tend to require fewer hardware
resources than their corresponding Web versions. The network traffic
volume exhibits a statistically significant difference in favour of native apps,
with a small effect size. Our results do not allow us to draw any conclusion
in terms of frame time.
Based on our results, we advise users to access Internet content using native
apps over Web apps, when possible. Also, the results of this study motivate
further research on the optimization of the usage of runtime resources of
mobile Web apps and Android browsers.

IoT. WebAssembly (WASM) is a low-level bytecode format that is gaining
traction among Internet of Things (IoT) devices. Because of IoT devices’
resources limitations, using WASM is becoming a popular technique for
virtualization on IoT devices. However, it is unclear if the promises of WASM
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3.3. PERFORMANCE- AND ENERGY-RELATED ASSESSMENT

regarding its efficient use of energy and performance gains hold true.
With this study, we aim to determine how different source programming
languages and runtime environments affect the energy consumption and
performance of WASM binaries.
Wagner et al. (2023) perform a controlled experiment where we compile
three benchmarking algorithms from four different programming languages
(i.e., C, Rust, Go, and JavaScript) to WASM and run them using two different
WASM runtimes on a Raspberry Pi 3B.
The source programming language significantly influences the performance
and energy consumption of WASM binaries. We did not find evidence of
the impact of the runtime environment. However, certain combinations
of source programming language and runtime environment leads to a
significant improvement of its energy consumption and performance.
IoT developers should choose the source programming language wisely to
benefit from better performance and a reduction in energy consumption.
Specifically, Javy-compiled JavaScript should be avoided, while C and Rust are
better options. We found no conclusive results for the choice of the WASM
runtime.

Monitoring tools With Dinga et al. (2023) our aim was to identify,
synthesize, and empirically evaluate the energy and performance overhead
of monitoring tools employed in the microservices and DevOps context.
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We selected four representative monitoring tools in the microservices and
DevOps context. These were evaluated via a controlled experiment on an
open-source Docker-based microservice benchmark system.
The results highlight: i) the specific frequency and workload conditions under
which energy consumption and performance metrics are impacted by the
tools; ii) the differences between the tools; iii) the relation between energy
and performance overhead.
We obtained significant results in terms of energy and performance (CPU
usage, CPU load, RAM usage, network traffic, and execution time), under
specific frequency and workload conditions. Not all the tools impact energy
efficiency and performance in the same way, but we observed a high energy
consumption and a high CPU, RAM, and execution time for the same tools.
The correlation analysis confirms the association for CPU and execution time,
but not for memory, hence the latter is likely to have a smaller impact on
energy. For a more granular analysis, to be able to detect energy hotspots
in monitoring tools, we plan to deploy a software power meter in a future
iteration, such as SmartWatts2, that measures energy at container level.

2https://powerapi-ng.github.io/smartwatts.html
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3.4 SECURITY-RELATED ASSESSMENT

3.4.1 UX evaluation

Security assessment is a key activity to expose vulnerabilities of a system. In
the context of the uDevOps project, the partners are acquiring knowledge
from the activities of one partner, Silensec, which develops a microservice-
based cyber-range platform used for training on security topics. The
platform allows the creation of attack-defense scenarios and the trainee are
scored according to their actions. We have evaluated the user experience
(UX) as quality attribute, in order to reduce the business risk arising from
competition with similar services that could erode the market share.
Usability is also a quality attribute that can impact the measure of ”risk”, as
it leads to unsatisfactory UX, indirectly impacting the competitiveness of the
solution. The evaluation we have conducted is reported in De-marcos et al.
(2022); the results point to critical elements of three main functionalities:
library of scenarios, scenario information and entering scenario. Since
there are several currently available solutions that offer similar services,
the user experience of the microservice web app may play a critical role in
determining which application will get a dominant role in the market. The
details of the evaluation are reported in De-marcos et al. (2022).
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3.5 COMBINING THE ESTIMATES

This Section briefly describes how one could combine estimates obtained
with different methods.

The techniques presented above adopt different techniques able to
provide an estimate of probability of failure (PFD). In almost all the cases,
this is derived by a frequentist strategy, where the number of observed
failures is used by an estimator depending on how the sample was selected.
In one case, we have also explored the use of a Bayesian strategy, with the
advantage of having a simple way to update the estimates as more data
becomes available.

The choice of the method to adopt depend on many aspects,
including the information available (e.g., auxiliary variable for sampling), the
uncertainty on the operational profile, how often the profile changes, the
proneness of the system to fail (e.g., with few failures, a Bayesian approach
may be better in avoiding overestimation), etc.

Regardless the estimators chosen, a simple yet effective policy to
combine the estimates is by combining them. Every estimate is associated
with a variance of the estimator, and this variance is directly related to
the confidence we can put in the estimation (higher variance, less stable
estimate, little confidence). Therefore, given a quality attribute (for instance
Reliability R = 1 − PFD), a simple way to combine two estimates R1

and R2 obtained with two distinct methods is to take the weighted average
26
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R̂1 · w1 + R̂2 · w2, where the weights w1 and w2 are the variances of the
estimate w1 = V (R̂1), w2 = V (R̂2).

The result can be combined with the failure impact (Table 2.1) to give
the risk estimate.
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4 RISK MITIGATION

4.1 OVERVIEW

Risk mitigation refers to all those strategies we have implemented to
reduce the risk associated with reliability, performance/energy, security
failures. The techniques we developed include debug testing (aimed at
fault detection rather than or besides reliability assessment), anomaly
detection and root cause analysis to support fault removal, as well as good
design practices at different development stages that can reduce the risk
of introducing failures (e.g., design for sustainability to improve, among
others, the energy footprint of the application; inconsistency detection at
architectural level; improving code quality via dead code detection and
removal).

These are discussed with reference to one or more quality attribute
(reliability, performance, energy, security) since, their application can easily
be customized to work with all the attributes.
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4.2 MITIGATION VIA TESTING

4.2.1 Optimal effort allocation for risk-aware test planning

We can exploit DTMC to model the reliability of single components and
use an optimization model to allocate testing resources to each service,
as quantitative support to test planning. In this way, components/services
deemed more risky would receive proportionally more effort, depending
on the prediction about their failing behaviour. The overall aim is to reduce
the effort to attain a minimum desired PFD on the overall system. Such
a strategy can be found in Pietrantuono et al. (2010), and can be easily
extended to the case of service-based systems where each component is
a microservice. Since the reliability (that is 1 − PFD) accounts for the
usage profile in this model, the formulation is more suited to assess the risk
entailed by a service failure.

Architectural model

The architecture of a software system can be described by an absorbing
DTMC, to represent terminating applications (as opposed to irreducible
DTMCs, which are more suitable to represent continuously running
applications). A DTMC is characterized by its states and transition
probabilities among the states. The one-step transition probability
matrix P = [pi,j] is a stochastic matrix so that all the elements in a row of P
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add up to 1 and each of the pi,j values lies in the range [0, 1]. The one-step
transition probability matrix with n states and m absorbing states can be
partitioned as:

P =

 Q C

0 I

 (4.1)
where Q is an (n-m) by (n-m) sub-stochastic matrix (with at least one

row sum < 1), I is an m by m identity matrix, 0 is an m by (n -m) matrix of
zeros and C an (n-m) by m matrix. If we denote with P k the k-step transition
probability matrix (where the entry (i,j) of the submatrixQk is the probability
of arriving in the state j from the state i after k steps), it can be shown Huang
and Lyu (2005); Trivedi (2001) that the so-called fundamental matrix M is
obtained as

M = (I −Q)−1 = I +Q+Q2 + · · ·+Qk =
∞∑
k=0

Qk (4.2)
Denoting with Xi,j, the number of visits from the state i to the state j

before absorption, the expected number of visits from i to j, i.e., vi,j = E[Xi,j],
is the mi,j entry of the fundamental matrix. Thus, the expected number of
visits starting from the initial state to the state j is:

v1,j = m1,j (4.3)
These values are called expected visit counts; denoted with Vj = v1,j,
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used to describe the usage of each component in the application control flow.
To compute the variance of visit counts, denote with σ2

i,j the variance of the
number of visits to j starting from i. Let MD be the diagonal matrix with:

MD =

 mi,j if i = j

0 otherwise (4.4)

and define M2 = [m2
i,j], we have

σ2 = M(2MD − I)−M2 (4.5)
Hence

V ar[Xi,j] = σ2
i,j (4.6)

To represent a service-based application as a DTMC, consider the
dependency graph. Assuming that an application has n services, with
the entry edge service indexed by 1 and the final service in an invocation
chain denoted as n, DTMC states represent the services and the transition
from state i to state j represents the invocation from service i to service j.
Following the procedure explained above, we can compute the expected
number of visits to each service and its variance.
The DTMC representation, along with the concept of visit counts, can be
used to express the system reliability as a function of the services reliability.
In particular, denoting with Ri the reliability of service i, the system
reliability is the product of individual reliability values raised to the power
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of the number of visits to each service, denoted by X1,i (i.e., each service
reliability is multiplied by itself as many times as the number of times it is
visited starting from the first one); i.e., R ≈

∏n
i R

X1,i

i . Since the number
of visits to a service is a random variable (except for the last service), the
so-computed system reliability is also a random variable. Thus, denoting
with E[R] the total expected reliability of the system, we have:

E[R] ≈
n∏
i

E[R
X1,i

i ] ≈ (
n−1∏
i

R
E[X1,i]
i )Rn (4.7)

where E[X1,i] is the expected number of visits to service i (and X1,i is
always 1 for the final service n). The adopted model is known to belong to the
class of hierarchical approaches; this kind of models, though approximate,
lead to quicker and more tractable solutions than composite models. To also
take into account the second-order architectural effects and obtain a more
accurate result, we can expand the above equation according to the Taylor
series:

E[R] = [
n−1∏
i

(R
m1,i

i +
1

2
(R

m1,i

i )(logRi)
2σ2

1,i)]Rn (4.8)
Where m1,i = E[X1,i] and σ2

1,i = Var[X1,i] (since X1,n is always 1, m1,n =
1 and σ2

1,n = 0).
The second-order architectural effects are captured by the variance of

the number of visits. The only source of approximation is the Taylor series
cut-off. Note that the described model, as most of the architecture-based
models, assumes independent failures among services.
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Optimization Model

The above DTMC model can be exploited in an optimization model to decide
how much effort to devote to test each service, given a reliability goal to
attain. Since the final reliability depends on the visit counts (hence on the
usage profile), a more reliable but more used service needs more testing than
a less reliable but rarely used service. This model accounts for this, hence it
is more prone for risk assessment.

The goal of the optimization model is to find the best combination of
testing efforts to be devoted to each service so that they achieve a reliability
level that can assure an overall reliability E[R] ≥ RMIN . For instance, if
we assume that the reliability of each service grows with the testing time
devoted to it, we can describe this relation by a software reliability growth
model (SRGM). This relation can be represented as T = f(λ), where T is
the Testing Time and λ is the failure intensity.
The general optimization model will then look like:
determine the optimal values of T1, T2, . . . , Tn so as to

Minimize T =
n∑

i=1

Ti =
n∑

i=1

fi(λi) (12.a)
subject to:

E[R] = [
n−1∏
i

Ri]Rn ≥ RMIN (12.b)
with i = 1 . . .n-1, n components and T indicating the total testing time
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for the application to get a total reliability E[R] ≥ RMIN . Here λi variables
are the decision variables (which determine the Ti variables and that are of
course present in the constraint factors, via Ri = exp[−

∫ ti
0 λi(θ)dθ]).

If we assume for simplicity a constant failure intensity after release, the
reliability of the service i at the end of the testing will be:

Ri = exp[−
∫ ti

0

λi(θ)dθ] = exp[−λiti] (4.10)
with ti is the expected execution time per visit to service i; this equation
relates the failure intensity of service i to its reliability. Each service can be
characterized by a different SRGM (among the plethora of proposed ones).
The solution of the optimization model will give the testing effort to devote to
each service to minimize the risk of failures given the observed usage profile
(e.g., in past releases).
4.2.2 Test generation and post-testing Failure propagation analysis

Besides test planning, we have worked on test generation for microservices.
MSA automated testing is possible thanks to well-defined service interfaces
specified in open formats like OpenAPI/Swagger. To support automated
MSA functional and non-functional testing, with Giamattei et al. (2024)
we have defined a framework that: (i) generates test cases with valid and
invalid inputs, and executes and monitors tests; (ii) provides coverage and
failure information not only on edge, but also on internal microservices;
(iii) has the novel feature of identifying causal relations in observed chains
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of microservices failures (propagated and masked failures). We abstracted
the testing process of MSA, present the MacroHive framework and its
causal inference engine, compare it experimentally to state-of-the-art tools,
and discuss its benefits in the MSA testing process. MacroHive exhibits
performance comparable to advanced existing tools in terms of edge-level
coverage. However, MacroHive has a better failure rate and provides the
unique advantages of giving insights about internal coverage and failures,
and of inferring causality in failure chains, evidencing microservices to be
improved to increase the whole MSA reliability.

Additional details are available in Giamattei et al. (2024).
4.2.3 Tests generation for fault detection

Besides the teset case generation techniques we have described in
Deliverable 3.1, we are currently exploring how AI is supporting testing
(other than testing of DNN), as also anticipated in D3.1.

With software systems becoming increasingly pervasive and
autonomous, our ability to test for their quality is severely challenged. Many
systems are called to operate in uncertain and highly-changing environment,
not rarely required to make intelligent decisions by themselves. This
easily results in an intractable state space to explore at testing time. The
state-of-the-art techniques try to keep the pace, e.g., by augmenting the
tester’s intuition with some form of (explicit or implicit) learning from
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observations to search this space efficiently. For instance, they exploit
historical data to drive the search (e.g., ML-driven testing) or the tests
execution data itself (e.g., adaptive or search- based testing). Despite the
indubitable advances, the need for smartening the search in such a huge
space keeps to be pressing. In the context of uDevOps, Giamattei et al.
(2023) introduce Reasoning-Based Software Testing (RBST), a new way of
thinking at the testing problem as a causal reasoning task. Compared to
mere intuition-based or state-of-the-art learning-based strategies, we claim
that causal reasoning more naturally emulates the process that a human
would do to “smartly” search the space. RBST aims to mimic and amplify,
with the power of computation, this ability. The conceptual leap can pave
the ground to a new trend of techniques, which can be variously instantiated
from the proposed framework, by exploiting the numerous tools for causal
discovery and inference. We provide a preliminary evaluation of a basic
instance of RBST, for testing an Autonomous Driving System against adaptive
testing and an ML-driven search-based technique. Results show the benefit
of exploiting cause-effect relations to derive safety-violating tests.

About performance testing of MSA, we are working on CAR-PT
(CAusal-Reasoning-driven Performance Testing), a model-based technique
for workload generation designed for the performance testing of MSA. CAR-
PT leverages causal reasoning to effectively explore the space of operational
conditions, with the goal of identifying those that lead to performance
issues.
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4.3 OPERATIONAL TIME TECHNIQUES

4.3.1 Anomaly detection

Risk mitigation is also achieved during operation, where errors can be
detected and treated before they can cause manage. An important part of
this task is anomaly detection. In the context of the project, with Cinque et al.
(2022) we describe a study on log mining in the domain of microservices
technologies. We focus on the detection of anomalies from logs, i.e.,
events requiring deeper inspection by analysts. Log mining is challenging
in microservices systems due to the high number of heterogeneous logs.
We present Micro2vec, a novel approach to mine numeric representations
of computer logs without making assumptions on the format of underlying
data and requiring no application knowledge; representations computed
by Micro2vec are suited for anomaly detection. To cope with the lack of
publicly-available datasets of labeled logs from production systems, we
validate our approach by means of a mixture of direct measurements from
logs, one-class classification experiments and generation of log variants.
The study has been conducted in the context of a Clearwater IP Multimedia
Subsystem setup consisting of microservices deployed in Docker containers,
and on a real-world critical information system from the Air Traffic Control
domain, which implements a communication model typically used with
microservices. Results indicate that analyzing metrics inferred by different
logs facilitates the detection of anomalies, which are characterized by
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signature involving multiple logs; it also allows inferring explicable detection
rules that are hard to be caught by human experts. In addition, log variants
obtained from normal logs can support detecting real anomalies, and they
improve over one-class classifiers. Further details are reported in Cinque
et al. (2022).
4.3.2 Design-time techniques

4.3.3 Sustainability-aware design

Risk incurred by bad design can be mitigated via good design practices.
This Section briefly describes the work done in the project on sustainability
modelling, hence with the focus on the need to satisfy sustainability
requirements.

Over the years, various thinking frameworks have been developed to
address sustainability as a quality property of software-intensive systems.
Notwithstanding, which quality concerns should be selected in practice
that have a significant impact on sustainability remains a challenge. In
this experience report, with Funke et al. (2023) we proposed the notion of
variability features, i.e., specific software features which are implemented in
a number of possible alternative variants, each with a potentially different
impact on sustainability. We extended sustainability decision maps to
incorporate these variability features into an already existing thinking
framework. Our findings were derived from a qualitative case study
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and evaluated in an industrial context. Data was collected by analysing
a real-world application (Zahori provided by Panel, a project’s partner)
and conducting working sessions together with expert interviews. The
variability features allowed us to identify and evaluate alternative usage
scenarios of one real-world software-intensive system, enabling data-
driven sustainability choices and suggestions for professional practices. By
providing concrete measurements, we can support software architects at
design time, and decision makers towards achieving sustainability goals.

This work is an example of quality-related activities carried out in the
design phase on a microservice application for decision support to designers,
aimed at preventing future issues affecting sustainability.
4.3.4 inconsistencies detection in software architecture

Documenting software architecture is important for a system’s success,
and allows reducing the probability of introducing errors in the system.
Software architecture documentation (SAD) makes information about the
system available and eases comprehensibility. There are different forms of
SADs like natural language texts and formal models with different benefits
and different purposes. However, there can be inconsistent information in
different SADs for the same system. Inconsistent documentation then can
cause flaws in development and maintenance. To tackle this, with Keim
et al. (2023) we present an approach for inconsistency detection in natural
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language SAD and formal architecture models. We make use of traceability
link recovery (TLR) and extend an existing approach. We utilize the results
from TLR to detect unmentioned (i.e., model elements without natural
language documentation) and missing model elements (i.e., described but
not modeled elements). In our evaluation, we measure how the adaptations
on TLR affected its performance. Moreover, we evaluate the inconsistency
detection. We use a benchmark with multiple open source projects and
compare the results with existing and baseline approaches. For TLR, we
achieve an excellent F1-score of 0.81, significantly outperforming the other
approaches by at least 0.24. Our approach also achieves excellent results
(accuracy: 0.93) for detecting unmentioned model elements and good
results for detecting missing model elements (accuracy: 0.75). These results
also significantly outperform competing baselines. Although we see room
for improvements, the results show that detecting inconsistencies using TLR
is promising.

4.4 CODE IMPROVEMENT

4.4.1 Code quality improvement via dead code elimination

A further phase where risk of failure can be reduced is coding. This Section
reports about the work conducted to improve the code quality, via dead code
elimination.

Web apps are built by using a combination of HTML, CSS, and
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JavaScript. While building modern web apps, it is common practice to
make use of third-party libraries and frameworks, as to improve developers’
productivity and code quality. Alongside these benefits, the adoption of
such libraries results in the introduction of JavaScript dead code, i.e., code
implementing unused functionalities. The costs for downloading and parsing
dead code can negatively contribute to the loading time and resource usage
of web apps.

In the context of the project, Malavolta et al. (2023) presented a study
with the following objectives:

• First, they present Lacuna, an approach for automatically detecting
and eliminating JavaScript dead code from web apps. The proposed
approach supports both static and dynamic analyses, it is extensible
and can be applied to any JavaScript code base, without imposing
constraints on the coding style or on the use of specific JavaScript
constructs.

• Second, by leveraging Lacuna they conduct an experiment to
empirically evaluate the run-time overhead of JavaScript dead code
in terms of energy consumption, performance, network usage, and
resource usage in the context of mobile web apps.

Lacuna is applied four times on 30 mobile web apps independently
developed by third-party developers, each time eliminating dead code
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according to a different optimization level provided by Lacuna. Afterward,
each different version of the web app is executed on an Android device,
while collecting measures to assess the potential run-time overhead caused
by dead code. Experimental results, among others, highlight that the
removal of JavaScript dead code has a positive impact on the loading time
of mobile web apps, while significantly reducing the number of bytes
transferred over the network.

Additional details are available in Malavolta et al. (2023).
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5 CONCLUSION

This document presented the work done for the definition of risk assessment
and mitigation strategies on atop of reliability, performance/energy, and
security assessment and improvement.

Specifically, we have first described the main challenges to measure
the risk associated with the failure of a system in meeting quality-of-service
(QoS) attributes for microservices, namely reliability, performance (and
additionally energy consumption), security.

Then, we presented the work done in the project to implement
techniques for the assessment of risks, realted to reliability, performance
and energy consumption, and security.

Finally, we have presented the work done to implement techniques
for risk mitigation. Several means have been exploited to reduce the risk
of failures, ranging from test planning, test generation, anomaly detection,
post-testing failure analysis, design-time quality improvement practices,
code improvement.
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The techniques developed in WP4 and reported in this document will
be the input to the final WP of the project, WP5.
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