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Abstract

This document reports the results of Deliverable D5.1 of the µDevOps
project, entitled “Testing process integrated in µDevOps fully defined”. The
type of the deliverable is marked as Report, and its dissemination level is
Public. The document will be made available through the project’s website,
https://udevops.eu/.

The document describes the overall testing process that puts results
of WP2, WP3 and WP4 together in a workflow to implement a context-aware
(WP2), in vivo (WP3) and risk-based (WP4) testing process. The solution
implements a conceptual workflow starting from the several sources of
information in a uDevOps engineering process and encompasses two main
areas: quality assessment and quality improvements through risk mitigation,
with several techniques that we implemented in throughout the process
targeting quality requrements that range from reliability to performance,
energy consumption, and, to a less extent, security.

The report describes broadly about all the strategies that we have
implemented for all the quality attributes we are targeting, while pointing
to previous deliverables for more details or to the project’s papers derived
from new techniques for further details.
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1 INTRODUCTION

The rise of microservice-based systems has transformed how modern
software is developed, deployed, and maintained. Within this landscape,
the integration of testing activities into the continuous development and
operations workflow (DevOps) becomes not just beneficial but essential to
maintain high levels of quality, reliability, and performance. This deliverable,
D5.1, presents a comprehensive and fully defined testing process tailored
for microservice architectures in the context of µDevOps.

This document consolidates and builds upon outcomes from previous
work packages (WP2, WP3, and WP4), each contributing specific techniques
and tools for context-aware, in vivo, and risk-based testing. The result is a
unified framework that seamlessly integrates diverse sources of data – from
code repositories and system logs to runtime performance metrics - into a
coherent process for both quality assessment and quality improvement.

The proposed testing workflow addresses a wide array of quality
attributes, including but not limited to reliability, performance, energy
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consumption, and robustness. It employs advanced methodologies such
as machine learning for fault prediction, causal inference for performance
issue diagnosis, and large language models (LLMs) for log-based test case
generation. These approaches enable intelligent automation across the
testing lifecycle, from operational profile extraction to test case prioritization
and failure root cause analysis.

Moreover, the µDevOps testing process is not merely about detecting
faults; it aims to systematically reduce risk by guiding development and
operational decisions through actionable insights. The services developed
span both the development (Dev) and operational (Ops) phases and are
structured around two orthogonal goals: quality assessment and quality
improvement. This includes services for fault avoidance, fault prediction,
fault removal, and fault tolerance, supporting a wide range of testing
strategies – from traditional functional testing to cutting-edge ex-vivo and
AI-driven techniques.

The rest of this deliverable details the high-level design of the
testing process, the specific services and techniques developed, and their
integration into the µDevOps pipeline. Particular emphasis is placed on
innovations introduced in WP5, including new methodologies and tools
that enhance the overall framework’s effectiveness and applicability in
real-world microservice systems.
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2 HIGH-LEVEL PROCESS DESCRIPTION

Figure 2.1 illustrates the uDevOps comprehensive microservices quality
assessment and improvement framework protptyped in the uDevOps
project.

In the following, its structure is descried.
• Data Sources and Metrics. The uDevOps is meant to be context-

aware. In order to support quality assessment and improvement
decisions to minimize the risk of failure depending on the context,
we need to harness data about the system under test In a DevOps
process, data come from several sources, both at development (Dev
data) and operational time (Ops data); we list the ones we harnessed
in our project, starting for Ops data:

– Data coming from logs capturing relevant events such as
failures, errors, warnings, or internal exception,

– Data from traces whenever we instrument the software to
3



Logs, Traces, OS/VM/Container Probes, Defect/Ticket/Issue repos, VCS (Git), Alerts, Documentation
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Figure 2.1. Usage workflow of the µDevOps learning engine.4



characterize, for instance, the typical invocation sequences
and build a reliable service depenedency graph;

– Data coming from resource usage statistics collected by the
OS or by the VM/Container engine like Docker stats; these
include both user and system metrics, such as: response
time, latency, throughput, failure counts, at user-level; CPU
consumption, memory, disk, network, power usage, at
system level.

– Data coming from the development (Dev data) are especially
useful to have the architecture of the system, deployment
information (e.g., which service to which container and node)
and static dependencies (e.g., call graph between services) –
design and deployment documentation is the source of data
here.

– Code churn metrics and version control systems data (e.g.,
from Git), such as number of commits, lines added, modified,
removed, test case metrics, and generally all those data
exploited in Just-in-Time defect prediction and for test case
prioritization.

– Data entered by users about experienced issues or alerts in
issue tracking systems.
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• Models. While some data directly go through the Learning Engine
block to be processed as input to the learning algorithms, some
other data are used to first parameterize other types of models
(non-ML). Examples include usage profile model capturing how
often a user exercises a given service or a sequence of service – a
piece of information useful for estimating quality figures aware of
the actual contexts in which the system is used - or architectural and
dependency model starting from documentation.

• Learning Algorithms. The learning algorithms process data collected
from monitoring, whose selection depends on the decision to be
supported (i.e., the SQA objective). We adopt a standard machine
learning workflow to aid SQA decisions by utilizing open-source
libraries that provide machine learning and causal inference
algorithms.
The algorithms make appropriate predictions aligned with tho
SQA objective to support. The used families of algorithms include:
Classification, Regression, Reinforcement Learning, Causal Inference
and Large Language Models, for the techniques described in the rest
of the deliverable or in the previous project’s deliverables.

• Services. At the bottom, we have services supporting both Dev stage
decisions and Ops stage ones. These are distinguished across two
dimensions: Dependability & Performance goal; Assessment or
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Improvement goal. As for the former, we adopt a little bit extended
notion of failure and fault compared to the usual dependability
taxonomy. We consider as a failure any deviation from the expected
quality requirement, being it a dependability, security, performance
or even energy requirement; and as a fault the adjudged cause for
such a deviation. Based on this, we distinguish the services w.r.t. the
goal supported:

– Fault Avoidance. This refers to all those good design and
development practices that avoid a failure to occur in
operation. Such activities include good design principles like
modularity, information hiding and encapsulation (which we
do not support), code analysis and improvement (we have
a service for this), and testing, wherein we have most of
our services. Our solutions support functional, reliability,
robustness, and performance testing for both fault detection
and quality assessment, including energy. Testing is followed
by debugging for code improvement, with which we do
not deal. Several of the implemented techniques here are
ex-vivo, namely the exploit in different ways data gathered
from the field, typically for a faithful assessment of a quality
attribute of interest.

– Fault Prediction. This encompasses activities aimed to predict
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defective modules, such as files or components, or defective
commits, like done in today’s just-in-time (JIT) defect

– Fault Removal. Fault removal can refer both to development-
time failures that call for correction, such as debugging the
code to remove faults after testing or other V&V activities
exposed a failure, or can result from operational-time failures.
We refer to this latter case, and focus on a fault removal
activity that is common in microservice (more generally
distributed) systems, that is root cause analysis (RCA). In
microservice architectures, wherein the system is composed
of tens or hundreds of small loosely coupled services, before
going to debug the code engineres typically try to efficiently
identify the service within which the failure originated. In
often case, there can be long propagation chains within a
microservice system before the problem reaches the user
interface. RCA here refers to the activity that, starting from
the failed service, attempts to automatically track back the
failure until the original failing service is identified. It usually
exploits data from monitoring and logging to infer such
chains. We implemented several algorithms for this activity.

– Fault Tolerance. This aims to ensure the system works
correctly even in presence of failures. It encompasses two
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steps: error detection and recovery, in turn consisting of error
handling (e.g., via rollback, roll-forward, compensation/masking)
and fault handling (with four phases, diagnosis, which can
exploit RCA, isolation, reconfiguration, re-initialization). In
uDevOps, we focused more on the error detection stage and
subsequent RCA, with anomaly detection from logs data or
referred to energy hotspot.

The second classification dimension distinguishes between
assessment and improvement.

– Assessment. Techniques for assessment aims at estimating
the expected value of a quality attribute of interest. For
instance, in the case of testing, the goal is to test the system
in the same conditions expected in operation, thus with a
testing profile similar to the operational profile. In such a
case, the ex-vivo approach can be particularly useful, as data
gathered from monitoring in previous iterations can well
serve to estimate the expected profile.

– Improvement. In this case, the technique aims to expose
as many problems as possible. Typical testing for fault
detection, either functional, robustness or performance, falls
in this category, as the generation of test cases aims to either
cover the requirements (regardless of the actual impact of
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the requirement on the end user) or to trigger failures, e.g.,
in unexpected conditions. Techniques for code improvement
(e.g., we implemented dead code elimination), for defect
prediction or tests prioritization also fall in this category.

The subsequent Sections detail the services designed and experimented
within the project as part of this process, following the two above
dimensions (fault avoidance, prediction, removal, tolerance; assessment

vs improvement). In Deliverable D5.2, we will release a proof-of-concept
containing prototypes of a subset of such services that we implemented to
demonstrate the process.

Before starting, let us remark that, in the following, the concept of
failure is broadly meant as any deviation of a delivered service from the
intended service a system is designed for, including both functional and
non-functional requirements such as correctness, reliability, robustness,
performance, security and energy efficiency – the ones we put the focus on.

A further note is that we will hereafter present briefly the services

based on techniques already introduced in other deliverables, while we

will devote some more space to new techniques developed in WP5.
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3 FAULT AVOIDANCE SERVICES

3.1 OVERVIEW

This Section reports the techniques we implemented that support fault
avoidance, highlighted in the previous Section. We distinguish assessment
and improvement techniques, the former useful for risk assessment the
latter for risk mitigation as described in Deliverable D4.1.

3.2 SERVICES FOR QUALITY ASSESSMENT

3.2.1 Operational Reliability and Performance Testing

We developed two ex-vivo techniques that exploits data gathered from the
field to derive tests whose results enable an unbiased estimate of reliability
and/or of performance. The two techniques mainly differ in the granularity.
The former generates tests considering the observed operational profile
in terms of equivalence classes of inputs for each invoked end-point,
thus considering the contribution to the failure probability of different
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3.2. SERVICES FOR QUALITY ASSESSMENT

combinations of input classes. The latter has a rougher grain, as the profile
is defined in terms of frequencies of invocation, not looking at the specific
input values, using a Discrete-time Markov chian to describe the profile.

Here we briefly describe the two techniques, prototyped in WP3.

Adapative Operational Reliability Testing

The service offers a stateless testing technique, where microservices are
tested individually by generating invocations to the endpoints API that
harness historical data. Specifically, the technique proposed uses adaptive
sampling for reliability-assessment testing.

It acts as a run-time testing strategy, triggered upon request by
a stakeholder who needs an estimate of the microservices operational
reliability. It achieves unbiasedness, accuracy and efficiency by three key
activities:

1. Monitoring: Field data are gathered about the microservices’
usage profile and about failure/success of demands. This provides
updated estimates representing the real reliability at the time when
the assessment is requested.

2. Testing: Using only passive observations (monitoring) is inadequate
for estimates with high accuracy and confidence. The testing
algorithm harnesses such data and adaptive statistical sampling, to

12



3.2. SERVICES FOR QUALITY ASSESSMENT

drive test generation and accelerate the exposure of failures. The
input space is partitioned into subdomains using specification-based
partitioning. It focuses on defining equivalence classes based on
input arguments of a method’s signature, for instance based on
string length and content. Data gathered reports the usage and
failure frequency of each partition (called test frame). This is the
usage profile.

3. Estimation: The testing algorithm identifies the most relevant test
cases in few steps, by forcing a disproportional selection of test
cases with respect to the observed usage profile. In principle, such a
type of sampling would yield biased estimates. Therefore, a proper
weight-based estimator is adopted at the end of testing in order
to counter-balance the selection strategy, ultimately providing an
accurate and unbiased estimate with small variance.

The technique is described in detail in Deliverable D3.1.

State-based Operational Reliability and Performance Testing

This implements a stateful technique for performance and reliability testing.
It integrates performance and reliability assessment in a DevOps context,
with a focus on continuous testing and monitoring. It involves realistic testing
in production or staging environments and comprises three main steps:

13



3.2. SERVICES FOR QUALITY ASSESSMENT

• Definition of Operating Conditions from field data, including: i)

Workload specification (valid/invalid requests based on API); ii)

Behavioural models based on Discrete-Time Markov Chains, DTMCs
to capture the sequences and probabilities of invocations; iii)

Workload intensity (number of concurrent users) and Behaviour mix
(namely, distribution of user types) definition. Session logs provide
raw data for automatic extraction of these models. The DTMC is
used to simulate user sessions with transitions between request
types, according to the specification.

• Ex-Vivo Testing. Tests are executed in controlled deployments
replicating real workloads, thanks to DTMC-based synthetic user
generation. Requests and inputs are sampled probabilistically from
the DTMC, in order t oget tests that cover multiple configurations
allowing to assess system response under varying conditions.

• Integrated Performance & Reliability Analysis. The gathered data
are used to assess performance (measuring how close the average
response time is to a threshold, defined based on usability or
scalability standards) and reliability as Ratio of successful (2xx)
HTTP responses. Results are automatically visualized using Apache
Zeppelin notebooks.

The technique allows to fully automate testing from usage data to
analysis and enables early detection of performance/reliability issues.
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3.2. SERVICES FOR QUALITY ASSESSMENT

Details are reported in Deliverable 3.1.
3.2.2 Log-based Reliability Testing

This service is particularly useful when operational data about specific
inputs are expensive to collect (e.g., require instrumentation) and we
want to minimize the manual intervention that is foreseen to define the
workloads for reliability and performance testing of the previous technique
– which, however, remains useful for workload-driven performance testing
not provided by the techniques hereafter explained. This technique, in fact,
exploits logs data, and is useful for operational reliability assessment, as
well as for fault detection and coverage driven by the observed behaviour in
operation.

The technique is descried in detail, being it developed in WP5.
Overview: The technique developed is a black-box testing technique that
enables stateful operational testing exploiting data from the field in the
form of sequences of invocation from collected logs, unlike the previous
two strategies. Black-box testing is a powerful way to assess and/or
improve MSA correctness and performance. Most existing techniques
generate HTTP requests from the given API microservice specification,
with strategies including search-based testing Arcuri (2021), heuristics and
graphical structures for inferring data dependency (Corradini et al.) or
producer-consumer dependency Atlidakis et al. (2019), as well as injecting

15



3.2. SERVICES FOR QUALITY ASSESSMENT

faults in the request Heorhiadi et al. (2016). Their performance is judged
in terms of coverage metrics (often response code coverage, schema
coverage) Martin-Lopez et al. (2019a), and of fault detection, meant as
mismatch between specified and returned HTTP code, or schemas violation
Golmohammadi et al. (2023).

Although these techniques provide important evidence for reasonable
trust in the system and for marking it as ready for release, they do not
account for how the system is actually used in the field. The detected faults
and achieved coverage refer to the adopted testing profile rather than to
the operational profile, with potential mismatch between the believed
and actual quality. It may easily happen that a service found to be heavily
faulty at testing time will rarely cause the system failure in operation if
that service is rarely used; conversely a quite robust but highly-exercised
service might impact runtime reliability more. Similarly, coverage achieved
during testing may not be representative of what will be actually exercised
at runtime; ideally, one should cover more thoroughly those services likely
to be exercised at runtime – a notion formalized in a different context as
operational coverage.

The testing literature often neglects operational-time information,
as it has always been difficult to gather, and a design-time estimation of
the operational profile is unreliable. However, with microservices, this is
no longer true. Thanks to the frequent releases and built-in monitoring
facilities, engineers actually know how the system is being used, and what
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3.2. SERVICES FOR QUALITY ASSESSMENT

service they should focus on.
We proposed Log-driven Microservice testing with Transformers

(LoMiT), an ex vivo testing technique that harnesses operational data
coming from monitoring to generate stateful test cases representative of the
expected operational behaviour – namely, enhancing operational coverage

- and able of detecting faults in services more likely to be exercised in the
next release’s operational stage.

The solution utilizes operational log data to understand system
behaviors and enhance the test suites with representative test cases. The
strategy learns the relationship between service invocation sequences and
the consequent system behaviors as captured by logs (e.g., occurrence
of 500 HTTP status codes, high response times) by a fine-tuned Large
Language Model (LLM). During inference, the model is asked to generate
new invocation sequences based on logs of interest given as input, such as
logs with erroneous or high-latency behaviors. This allows to both mimic the
operational behaviour and triggering more sequence-dependent failures.

Figure 3.1 shows the main steps characterizing the technique. The
proposal leverages both event logs and system trace data.

Event logs consist of sequences of text lines generated automatically
during the software execution, typically saved in log files, describing the
system’s runtime behavior Cinque et al. (2020), including notifications
related to system failures.

17



3.2. SERVICES FOR QUALITY ASSESSMENT

Figure 3.1. Transformer-based ex vivo testing technique for regression test cases generation
using event logs and system traces.

System trace data provide detailed data on the interaction of the
system’s services, allowing to track source-destination of the services
invocation, the obtained response codes, invocation latency, etc.

A transformer (originally pre-trained on English) is fine-tuned using
both data sources with the aim to learn the association between service
invocation chains X , embedded via n features {x1, x2, . . . , xn} ∈ X , and
the produced logs Y , described by m features {y1, y2, . . . , ym} ∈ Y . This
way, the LLM learns the joint probability distribution P (X ,Y).

The fine-tuned LLM is then prompted to generate new sequences of
service invocations X ′ given a subset of k features of interest of data sources
Y : Y ′ = {y′1, y′2, . . . , y′k} ∈ Y , representing a behavior that the tester aims
to reproduce, e.g., logs with services failures or with high latency. In other
words, we ask for P (X ′|Y ′).
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3.2. SERVICES FOR QUALITY ASSESSMENT

Figure 3.2. Example of entry in the dataset obtained for the TrainTicket subject.

The LLM fine-tuning requires a pre-processing step (Subsection 3.2.2)
to associate each trace — representing a specific system invocation - with
the corresponding entries in the event log. The LLM fine-tuning is done
with a subset (Training set in Figure 3.1) of the dataset produced by the pre-
processing stage.

All the three steps of the technique are detailed in the following.

Pre-processing

Given a collection of logs and traces, the pre-processing step links each
trace Ti (identified by a trace ID i) to the event log entries generated during
the invocations included in the trace. Specifically, this stage: (i) identifies
the time span of each trace (time interval between the first and the last
recorded events) and extracts the sequence of services invoked within the
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3.2. SERVICES FOR QUALITY ASSESSMENT

trace; (ii) aggregates the log entries that occur within the extracted time
span (hereinafter raw log); (iii) labels the raw log entries with the extracted
services sequence.

These steps generate a dataset including, for each trace ID, (i) the
sequence of services involved in the trace – denoted as X ; (ii) the raw log
entries associated with the trace, along with additional data extracted from
the trace and logs, i.e., latency (in seconds) of the interaction described
by the trace, the endpoints involved in the interaction, the number of log
entries per severity level (e.g., WARNING, ERROR) and the distribution
of http response codes (e.g., 200, 400, 500) – all these features being
denoted as Y . Figure 3.2 shows an entry from the dataset obtained for TT.1
Finally, the dataset is evenly divided into Training and Test sets, the first one
used for model fine-tuning, the second for test cases generation.

Fine-tuning

We use a T5-small model, a reduced version of the T5 transformer-based
sequence-to-sequence model. T5-small is based on the encoder-decoder
architecture, and encompasses six layers in each encoder and decoder,
eight attention heads, and around 60 million parameters. T5 is pre-trained
on the colossal clean crawled corpus (C4) dataset (a massive collection of
clean English text scraped from the web), and on a mixture of unsupervised

1Some fields are truncated in the figure for the sake of clarity.
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3.2. SERVICES FOR QUALITY ASSESSMENT

and supervised tasks, including question answering and natural language
inference. T5 models each problem into a text-to-text format: a text input
is provided to the model, where the task to be performed is indicated as
prefix; its output is in text format.

T5-small can be fine-tuned for different type of tasks, such as
summarization, classification, and translation. In this study, we fine-tuned
the pre-trained model (retrieved from the Hugging Face transformer library)
on the task of generating sequence of service invocations from raw logs.
This task is modeled as a translation task, where the raw logs represent
the input, i.e., the interesting log entries collected in operation, while the
services sequence is the expected output, i.e., the sequence of invocations
generating the log entries, which are subsequently used to improve
regression test suites by including representative test cases suggested by
the raw logs.

The fine-tuning has been carried out using the Training set generated
during the pre-processing step. The training set is further divided in 90% for
training and 10% for testing, with the latter used to assess the performance
of the model after each training epoch. The model has been trained for 18
epochs, with a 0.00001 learning rate and 0.01 weight decay. The Levenshtein
distance is used to evaluate the performance of the model after each epoch.
This metric is used to measure the distance between two services sequences,
i.e., compare the actual services sequence (the label) and the generated
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3.2. SERVICES FOR QUALITY ASSESSMENT

one.2

Test cases generation

The fine-tuned transformer is used to generate the test cases suggested by
the raw logs. The generation makes use of uTest Giamattei et al. (2022), the
pairwise combinatorial strategy we introduced in our previous deliverables,
which leverages OpenAPI specifications of microservices to generate test
cases, as well as to execute them and collect the obtained results.

The test cases generation stage is shown in Figure 3.3. Each entry int
the Test set is processed through three main steps: (i) the raw logs field
of the entry is provided to the fine-tuned transformer, which generates
the corresponding services sequence; (ii) the generated sequence is used
to perform a look-up operation into the services API of the target system,
with the aim to find the API of the services included within the sequence
provided by the transformer; (iii) the identified services API are then passed
to uTest, which generates the test cases encompassing valid input values.

Figure 3.43 shows an example of prompt provided to the fine-tuned
transformer for services sequence generation in the context of the TT

2To directly apply the metric, we replaced the service names with single characters,
e.g., the sequences ts-station-service--ts-food-service--ts-route-service and
ts-station-service--ts-travel-service--ts-route- service in TT become A-B-C and A-D-C,
with 1 as Levenshtein distance.

3Raw logs are truncated in the figure for the sake of clarity.
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3.2. SERVICES FOR QUALITY ASSESSMENT

Figure 3.3. Test cases generation stage.

Figure 3.4. Example of prompt to the fine-tuned transformer for the TrainTicket subject.
subject. As it can be noted, the prompt asks the transformer to generate the
involved services (i.e., the services sequence) from the raw logs provided
as input. In this case the generated services sequence exactly matches
the expected output (as it can be inferred comparing Expected output and
Obtained output in Figure 3.4).

Given a service from the generated sequence, the look-up operation
selects the API that matches the service name; if multiple matches are found,
APIs that support the POST HTTP method are preferred as it is commonly
used to generate new entities in the target system.

After generating the test cases, uTest runs them on the target system
and reports the obtained results, including number of executed tests,
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Table 3.1. Coverage metrics.
Metric Description

Status code class A test suite reaches 100% status code class coverage when it is able to trigger both
correct and erroneous status codes.

(2 classes) If it triggers only status codes belonging to the same class (either correct or
erroneous), coverage equals 50%. 2XX class
represents a correct execution and 4XX and 5XX classes represent an erroneous
execution.

Status code class As the previous one, but considers 2XX, 4XX and 5XX classes separately. A test suite
reaches 100% status code class coverage

(3 classes) when it triggers all the three status code classes, 66% in case of two classes, and 33%
if just one class is triggered.

amount of succeeded/failed tests, HTTP response codes (e.g., 200, 400,
500), and coverage metrics, which can be used to evaluate the testing
campaign.

We consider both the failure rate, i.e., the number of failures exposed
by the executed tests, and the coverage metrics defined in Martin-Lopez
et al. (2019b), and summarized in Table 3.1.

The technique is evaluated on two well-known benchmark systems,
namely TrainTicket and SockShop, and results are under publication
Della Corte et al. (2025).
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3.2.3 Empirical energy-consumption Assessment

In the context of the uDevOps project, we have defined and run an empirical
analysis of energy consumption and performance metrics of web apps,
considering 10 different Internet content platforms across 5 categories,
measuring energy consumption, network traffic volume, CPU load, memory
load, and frame time of their native and Web versions. This was done during
WP4, details are in D4.1 and D4.2, wherein a similar solution for IoT, another
context where microservice architectures was shown to be useful.

It is worth noting that, although the empirical assessment can be seen
as a testing session, it is not automatically generalizable as a “technique”.
There are in fact manual steps to be done to apply this assessment to other
applications, encompassing the creation of the testbed and the analysis of
results.
3.2.4 Performance Degradation Assessment

Similarly to the previous case, we have defined a workload-driven test
methodology to assess performance degradation over long running
executions – a phenomenon called runtime software aging. In the uDevOps
project, this is applied in the context of ML-based systems running under
low-resource constraints, such as in a cloud-edge computing where a tiny
ML task (e.g., object detection) is run at the edge nodes, with limited
computational capabilities. This is also an instance of what is called AIoT
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systems, created according to a microservice- like style.
Similarily to the previous case, this constitutes an example of

workload-driven testing for empirical assessment, which can indeed be
replicated for another system but entailing manual intervention for tailoring
the workload specification and testbed creation.

This was also done during WP4, details are in the corresponding
deliverables and referenced papers.
3.2.5 ML Services Assessment

A trend we addressed during WP5 was the assessment of reliability of
ML software, corresponding to accuracy in this case. As ML algorithms
are increasingly servitized, microservice architectures encompassing ML
services are more and more common. In this perspective, we devised
sampling-based testing solutions (as those defined in WP3) for both ML
image classification algorithms using DNNs and for Large Language Models
(LLM) for a specific task – we opted for sentiment analysis.

A countless number of software systems today rely on DNN and LLM
predictions. Before release, engineers need to test the DNN/LLM to estimate
their accuracy (i.e., probability of not having mispredictions). This allows to
establish a release criterion and to correct or fnie-tune the DNN/LLM until
the criterion is met.

Within the reference scenario, an AI model is designed to function
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within a specific context and is trained using a training dataset. The
tester’s aim is to choose a small, yet representative, subset of (unlabeled)
inputs from an operational dataset. These inputs serve as test cases to
evaluate the model accuracy. The manual labeling process is costly. The
challenge lies in creating a compact test set that can provide an unbiased
and high-confidence assessment of the model’s accuracy. Simultaneously,
the testers are keen on identifying mispredictions, which are crucial for
debugging and retraining. Thus, the objectives are threefold: to develop a
small dataset that can accurately estimate model accuracy and effectively
highlight mispredictions.

To address this, the study introduces a probabilistic, sampling-
based operational testing approach tailored for DNNs amd for LLMs, for,
respectively, image classification and natural language processing. This
methodology uses auxiliary variables – specifically, prediction confidence,
test-training distance metrics, and entropy — to guide the sampling process
and improve the efficiency of manual labeling efforts.

The core idea is to sample a small, representative subset from
the operational dataset that provides a reliable estimate of the modelps
accuracy and exposes likely failures. Various sampling algorithms are
explored, including:

• Simple Unequal Probability Sampling (SUPS)
• Rao, Hartley, and Cochran Sampling (RHC-S)
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• Stratified Simple Random Sampling (SSRS)
• Gradient-Based Sampling (GBS)
• Two-stage Unequal Probability Sampling (2-UPS)
• DeepEST (DNN Enhanced Sampler for Testing)

We have tested the technique, called DeepSample, on DNNs for image
classification Guerriero et al. (2024) and on an LLM for sentiment analysis,
DistilBERT Asgari et al. (2025), using multiple datasets (ImageNet, MNIST,
Cifar, Udacity for images, SST2, IMDB for sentiment analysis) showing
consistent benefits in both estimation error and failure exposure. This
operational testing framework enables cost-effective, accurate, and
explainable evaluation of DNNs and LLMs. It provides a practical MLOps-
oriented solution for ongoing model validation in real-world environments.
Details are in two papers published recently Guerriero et al. (2024) and
Asgari et al. (2025).

3.3 SERVICES FOR QUALITY IMPROVEMENT

While the previous techniques give estimate of a quality of interest, thus
can be used at acceptance testing stage, the following techniques are for
exposing possible failures in the compliance to functional or non-functional
requirements. Thus they are more oriented to give feedback at development

testing stage.
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3.3.1 Functional and Robustnes Testing Service

We briefly review this technique, introduced in the previous WPs. This
solution has been packaged and containerized into a set of services that can
be used to automatically generate grey-box tests, taking the API specification
as input.

The grey-box testing strategy for Microservice Architectures (MSAs)
enhances system observability to identify failures and assess internal test
coverage, crucial for complex distributed systems. Unlike black-box testing,
it allows visibility into both edge and internal service interactions, facilitating
tracing and understanding of failures. Grey-box testing, implemented
through a solution like MacroHive, generates test cases using microservice
APIs and tracks internal requests using a service mesh pattern. This approach
provides detailed visibility, detecting both masked failures (internal issues
hidden by correct edge responses) and propagated failures (internal issues
causing visible edge errors)..

The solution detects both edge and internal failures without manual
inspection. It uses a service mesh (called uProxy and uSauron) to monitor
request flows and a test generator (uTest) that creates combinatorial test
cases from OpenAPI specs. Proxies intercept traffic and send detailed logs
to uSauron, which maps them to specific tests to identify failure causes
and service dependencies. The system supports efficient, automated, and
fine-grained testing of complex microservice interactions. Details are in past
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deliverables and in the referenced papers.
The service can easily be configured to focus more on functional or

robustness testing, with variants of tests generation available for both.
3.3.2 Performance Configuration Testing Service

Performance testing of microservice applications is essential for understanding
how workloads affect user experience and resources usage, for choosing
among deployment alternatives, and to engineer proper mitigation
means, like performance bug removal and capacity planning. In designing
performance tests, engineers need to balance the goal of exposing
performance issues with the stringent release deadlines typical of agile
microservice development processes. As running tests for all possible
workload configurations is unfeasible, the challenge is how to find critical

configurations, expected to cause performance failures. Systems may
exhibit performance failures, e.g., due to lack of robustness against heavy
loads , or even at low load, due to other types of faults.

Existing microservices performance testing techniques and tools
support the automation of tasks like tests execution de Camargo et al.
(2016), the deployment of test configurations given a manual specification
in a Domain Specific Language Ferme and Pautasso (2018), or the generation
of tests with a workload inferred from the observed operational profile
to mimic the expected usage Avritzer et al. (2018, 2020); Camilli et al.
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Figure 3.5. CALLMIT architecture
(2022a,b). During WP5, we devised a technique named CALLMIT (CAusality-
enhanced Large Language model for MIcroservices performance Testing), a
strategy to automate the generation of critical workload configurations and
of the subsequent test cases, with the aim of saving testing effort by running
only those ones more likely to lead to a degradation.

CALLMIT harnesses Causal Reasoning and Large Language Models
(LLM). Specifically, we devise a new Retrieval Augmented Generation (RAG)
strategy to improve the prompt to the LLM that uses the (automatically-
inferred) causal relationships between the microservices’ performance
metrics to provide configurations more likely to produce a failure.

CALLMIT is experimentally evaluated in several variants, and
compared to a conventional RAG technique on three popular subjects The
results are that causal models can actually improve the ability of LLM to
correctly identify performance-critical workload configurations.

Figure 3.5 shows the architecture of the proposed framework.
CALLMIT exploits an LLM augmented with a causal graph for detecting
workload configurations that lead to performance issues in a microservices
application. A performance issue is defined as any instance where one or
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more observed performance metrics exceed a specified threshold during
a testing or monitoring session.4 A workload configuration is defined as a
triple <User size, Load type, Spawn rate>, where:

• User size (US): number of concurrent users;
• Load type (LT): operational profile, specified categorically (e.g.,

uniform, unbalanced towards some services);
• Spawn rate (SR): number of users to spawn per second.

CALLMIT uses a dataset obtained by monitoring past executions
(as usual in microservice applications) in order to guide the generation
of workload configurations. As in past works Giamattei et al. (2024), we
build the dataset from monitoring data (logs and performance metrics),
inferring the workload configuration parameters (WP) (US, LT, SR) and the
resource usage (i.e. CPU and memory usage), response time (RT) and
request rate for each service. The data is used to augment the prompt given
to the LLM with two items, namely a context and a set of causal paths. As
for the former, historical data is used like in a conventional RAG system
(Retrieval-Augmented Generator in Figure 3.5), providing the LLM with
contextual data. As for the latter, past data is used to build a causal graph,
which is given to the LLM in the form of causal paths to improve its outputs
(Causal Paths Retriever in Figure 3.5).

4The thresholds can be either defined manually or inferred automatically as in Avritzer et al. Avritzer et al.
(2020).
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Retrieval-Augmented Generator.
CALLMIT leverages Retrieval-Augmented Generation for the purpose

of supplying the LLM with contextual data. This requires to specify how the

historical dataset is partitioned (chunking), which embedding model is used,
and how the chunks to be provided to the prompt are selected. To preserve
the semantics of data in the dataset, the latter is partitioned by rows, with
each row serving as an individual chunk. The chunks and the question are
then converted into a vector through a pretrained embedding model (all-
MiniLM-L6-v2-f16). The best chunks to retrieve are identified by running a
similarity search (cosine similarity) with the question.
Causal Paths Retriever.

The Causal Paths Retriever (CPR) enhances the LLM by augmenting the
prompt with causal knowledge.

Let a weighted directed acyclic graph (DAG) G = (X, E ,W) be the
causal graph representing a linear causal model – specifically a Structural
Equation Model (SEM) - where nodes Xi ∈ X are random variables,
edges ei ∈ E denote the causal relationships between them, and W is
an |X| × |X| adjacency matrix W = {wi,j}, with wi,j representing the
connection strength fromXi toXj. CALLMIT learns this model automatically
from the historical dataset via a causal discovery algorithm, that is dLiNGAM
Shimizu et al. (2011). For each service, the dataset has four variables for the
considered performance metrics (request rate, RT, CPU usage, and memory
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consumption), and three variables representing the workload parameters
WP (user size, load type, spawn rate).

The causal model is meant to represent the relations between the WP
and the performance metrics of interest (e.g., RT, memory usage) for all the
services. To prompt the LLM, we consider a set of causal paths in the graph.
A causal path P = X0 → X1 → · · · → Xn is a finite directed path, namely
a sequence of (non-repeated) edges (e1, e2, . . . , en−1) ∈ E directed in the
same direction that joins a sequence of distinct vertices (X1, X2, . . . Xn) ∈

X . The task of the CPR is to get the most informative paths that link the WP
to the performance metric of interest, so as to highlight what changes in the
WP is more likely to affect that metric, net of possible confounders.

Since the number of nodes and edges can increase significantly as the
number of services grows, and since the performance of LLM can decrease
with long prompts Levy et al. (2024), CALLMIT selects a subset of causal
paths. These need to beworkload-related causal paths, i.e. paths originating
from the WP nodes (i.e., US, LT and SR) and leading to the target node of
interest (i.e., a node representing the service-metric pair for which we want
to generate a critical configuration, e.g., response time of service Si.

In order to reduce the number of selected paths and focus on the most
impacting ones, we exploit the notion of causal strength - an estimate of
how much the effect variable is expected to change for a change in the cause
variable Janzing et al. (2013) - in the form of edge strength (or connection
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strength) coefficients Wwi,j as computed by dLiNGAM Shimizu et al. (2011)
based on the covariance matrix. The strength of a causal path is the sum of
the causal strengths of its constituent edges.

We use the strength to select only the top-k paths. In the
experimentation, we test two variants of CALLMIT, top-1 and top-5.
Moreover, in order to reduce the time to search for the strongest paths,
we consider a pruned causal graph, i.e., a graph in which several edges
are removed, based on a causal strength threshold – all the edges with
a strength less than a causal strength threshold ThCS (set to 0.3 during
experimentation) are removed from the graph, resulting in a new graph
G ′ = (X, E ′,W ′) where E ′ = {e ∈ E | |W ′(e)| > ThCS}. This gives four
variants of CALLMIT (top-1 and top-5, with and without pruning).

The prompt is composed of the following sections:
• Generation Constraints: the constraints specify the accepted values

for WP, i.e. the boundaries for the User size, the categories for the
Load type, and the acceptable ranges for Spawn rate;

• Causal Paths: the causal paths selected;
• Contextual Data: the context is provided by the Retrieval-Augmented

Generator;
• Question: the question invokes the LLM generation, specifying the

target metric and the thresholds.
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Thresholds for establishing whether a configuration is critical
or not are defined according to Avritzer et al. Avritzer et al. (2020)
(scalability thresholds) as τX = µX + 3 · σX , where X is the variable of
interest, and µX and σX are its mean and standard deviation over past
executions.
Experimentation. We evaluate the benefit in detecting performance issues
of augmenting the LLM prompt with causal paths. The experiments use
three subjects and two LLM. These are queried to detect which workload
configurations result in performance issues, by varying the user size US – a
natural number, which we assume bounded in [Umin, Umax] - the load type
LT – which we assume to be categorical variables in the experimentation -
and the spawn rate SR.

As evaluation metrics, we useprecision, number of performance issues
correctly detected over number of all potential performance issues predicted
by the model; recall, number of issues correctly detected over number of
actual issues; F1, which is their armonic mean.
Subjects µBench5 Detti et al. (2023) is an artificial microservice application
composed of 10 services, with a random service dependency graph and a
random stressing function per service (stress/idle function). SockShop6 is a
benchmarking application for cloud-native microservices testing, emulating
an e-commerce site; it is composed of 8 services (6 edge services).

5https://github.com/mSvcBench/muBench.
6https://github.com/ocp-power-demos/sock-shop-demo.
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Table 3.2. Results in detecting response time and CPU issues. Underlined: Best avg. values.
Boldface: significantly different from RAG

LLM Performance Technique µBench TeaStore SockShop

metric precision recall F1 precision recall F1 precision recall F1

phi3.5

RT

S 0.490 1.000 0.657 0.782 0.902 0.837 0.462 1.000 0.632
S5 0.580 1.000 0.718 0.667 1.000 0.800 0.462 1.000 0.632
SP 0.300 1.000 0.458 0.940 0.576 0.700 0.462 1.000 0.632

SP5 0.200 1.000 0.333 0.667 0.571 0.615 0.462 1.000 0.632
RAG 0.430 1.000 0.599 0.333 1.000 0.500 0.462 1.000 0.632

CPU

S 1.000 1.000 1.000 0.450 0.112 0.180 0.846 1.000 0.917

S5 1.000 0.900 0.945 0.500 0.125 0.200 0.846 1.000 0.917

SP 1.000 0.890 0.940 0.500 0.125 0.200 0.846 1.000 0.917

SP5 1.000 1.000 1.000 0.500 0.125 0.200 0.846 1.000 0.917

RAG 0.870 0.756 0.807 0.134 0.417 0.200 0.815 1.000 0.898

gemini

RT

S 0.720 1.000 0.837 1.000 1.000 1.000 0.500 1.000 0.666

S5 0.770 1.000 0.869 1.000 1.000 1.000 0.454 1.000 0.621

SP 0.690 1.000 0.816 1.000 1.000 1.000 0.500 1.000 0.666

SP5 0.700 1.000 0.824 1.000 1.000 1.000 0.385 1.000 0.556

RAG 0.680 1.000 0.807 1.000 1.000 1.000 0.308 1.000 0.471

CPU

S 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

S5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SP5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

RAG 1.000 1.000 1.000 1.000 0.878 0.935 0.923 1.000 0.960

TeaStore7 v. Kistowski et al. (2019) is a benchmark emulating a web store
with automated customer orders, comprising a registry and five services.
Baseline and CALLMIT variants As baseline, we use the LLM simply
integrated with a RAG system (called RAG) and compare it against four
variants of CALLMIT, which enhances RAG with the causal paths retriever.
We consider these variants for paths selection:

7https://github.com/DescartesResearch/TeaStore-
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S top-1: It selects the Strongest causal path (one for each workload
parameter);

S5 top-5: It selects the five Strongest causal path (five for each workload
parameter);

SP top-1 with pruning: It selects the Strongest causal path (one for each
workload parameter) on the Pruned graph;

SP5 top-5 with pruning: It selects the five Strongest causal path (five for
each parameter) on the Pruned graph;

Experiments Setup. For the experiments, we have synthesized a historical
dataset for each subject. Specifically, we considered: all values in (Umax −

Umin) for the user sizeUS; three values for the load type LT – one for balanced
workload (every service receives the same amount of requests), and two
with a workload unbalanced toward a subset of services simulating two use
cases (CPU- and memory-intensive, respectively) - three values for spawn
rate SR {1,5,10}. Each workload configuration lasts three minutes and is run
five times, with a two-minute pause between runs to avoid carryover effects
(consecutive runs influencing each other, e.g., in CPU and memory usage).

To construct the causal graph, we provide the dLiNGAM causal

structure discovery algorithm with the historical dataset and prior
knowledge. Prior knowledge is specified as required or forbidden edges.
We defined the edges connecting WP to the request rate for each service as
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mandatory.
Finally, considering the LLM scaling law outlined in Kaplan et al. (2020),

we opted for two LLM with a remarkably difference in size: phi3.5 et al.
(2024) and gemini-1.5-flash (gemini) Team (2024).
Results

Table 3.2 reports the results (average over 10 repetitions) with the
Dunn’s test results comparing each variant vs RAG (α = .05) Dunn (1964).
Results about memory for SockShop are in Table 3.3, as µBench and
TeaStore did not exhibit memory issues.

Does the causal path retriever improve performance? CPR shows
superior performance compared to RAG, achieving consistent improvements
across all metrics. On average, CPR outperforms the baseline by 6.5% in F1

score. This improvement is primarily driven by a 13.1% increase in precision,
despite a slight decrease in recall (1.68%). The recall reduction is primarily

Table 3.3. Results in detecting memory issues on SockShop

Technique phi3.5 gemini

precision recall F1 precision recall F1

S 0.569 1.000 0.724 0.815 1.000 0.898
S5 0.638 1.000 0.779 0.815 1.000 0.898
SP 0.785 1.000 0.879 0.808 1.000 0.893
SP5 0.692 1.000 0.818 0.846 1.000 0.917

RAG 0.669 1.000 0.800 0.769 1.000 0.870
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because RAG, which does not exploit any kind of knowledge, tends to always
generate some configuration without specifically looking for critical ones
(hence, its low precision) – this happens mainly with TeaStore, where the
large reduction impacts the average, while recall is 1 in most of the other
cases.

On µBench, CPR achieves a consistent improvement, with a gain of
4.45%, 5.1%, and 4.24% in precision, recall, and F1 score, respectively. On
TeaStore, CPR yields a larger improvement, 31.8%, in precision but with a
decrease in recall (12.47%). Nonetheless, the F1 score improves by 11.31%.
On SockShop, where both CPR and the baseline maintain a recall of 1,
the performance improvement is measurable in terms of precision, which
increases by 7.95%.

Does the causal strength selection strategy improve performance? We
compare the selection strategies (S, S5) against RAG. On average, the two
strategies enhance performance by 13.73% in precision, 8.44% in F1 score,
with a slight decrease in recall. The largest impact is onprecision, consistently
with the observation that RAG exhibits high recall.

Does pruning impact performance? We compare the two pruning
strategies (SP and SP5) against RAG. On average, they yield a 4.56% increase
in F1 score, which is about half the improvement of non-pruning techniques.
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This reduced gain is due to a 3.12% decrease in recall. We conclude that
pruning trades the reduced paths retrieval time off with performance.

Howmuch does CALLMIT benefit different LLM? For gemini, the baseline
performance is already high, so augmenting the LLM prompt with CPR has a
lower impact. Nonetheless, CALLMIT improves performance on average by
5.65%, 1.77%, and 5.33% in precision, recall, and F1 score, respectively. For
phi3.5, the improvements are more pronounced, expecially for F1, which
increases by 8.09%. This gain is driven by the improvement in precision

(24.51%), paid in terms of recall (5.53% decrease). Applying CALLMIT to a
larger LLM results in a less pronounced but consistent improvement across
the metrics.

The technique showed promising performance and can easily be
extended to deal with other qulaity requirements. Further details are in the
paper we pusblished Mascia et al. (2025).
3.3.3 Code Improvement

A technique for dead code elimination was proposed in WP4, briefly recall
here.

To reduce failure risks during coding, Lacuna was introduced, a
tool that detects and removes unused JavaScript code in web apps using
static and dynamic analysis. Dead code—often introduced by third-party

41



3.3. SERVICES FOR QUALITY IMPROVEMENT

libraries—can degrade performance, especially in mobile apps. Applying
Lacuna to 30 real-world mobile web apps showed that dead code elimination
improves load times and reduces network usage, without requiring changes
to coding style or structure. Details are in WP4 and the referenced papers.
3.3.4 Inconsistency Architecture Detection

Inconsistent software architecture documentation (SAD)—across natural
language texts and formal models—can lead to development and
maintenance issues.

In WP4, an approach was proposed to enhance traceability link
recovery (TLR) for automatically detecting such inconsistencies. It identifies
unmentioned model elements (present in the model but undocumented)
and missing elements (described but not modeled). Evaluated on open-
source projects, the method achieved strong results, with an F1-score of
0.81 for TLR and accuracies of 0.93 and 0.75 for unmentioned and missing
elements, respectively—outperforming existing approaches.

This strategy is well suited to support inconsistency check detection
in microservice architectures. More details are in WP4 and the related
references.
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3.3.5 Sustainability-aware Design Support

To reduce risks from poor design, Funke et al. (2023) explored sustainability
modeling in software systems by introducing variability features—alternative
implementations of software features with differing sustainability impacts.
This work was in the context of WP4.

The project partner VU extended existing decision-making frameworks
to include these features and applied the approach to a real-world system
(Zahori) through expert interviews and case study analysis. This allowed the
evaluation of alternative scenarios and supported data-driven, sustainable
design decisions, helping architects and stakeholders make informed choices
during the design phase of microservice applications.

More details are in WP4 and the referenced paper.
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4 FAULT PREDICTION SERVICES

4.1 OVERVIEW

This Section reports the techniques we implemented that support fault
prediction. There are two services with this focus, both classified as
improvement techniques. Both the strategies were introduced in WP2, and
here are briefly recalled.
4.1.1 Test Case Prioritization

The objective of this technique is to support test prioritization in an MSA,
namely: given a list of tests to run, the goal is to run first the ones more
likely to expose failures. Prioritization is done by applying machine learning
(learning-to-rank) algorithms to features of request/response and/or of
the invoked Microservice that correlate more with quality metrics, such as
performance (e.g., response time), reliability (e.g., status code) or coverage.
The feedback allows for prioritizing test cases. The tests can be already
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given, or can be generated automatically by the testing tool developed in
the context of this project and described in the previous chapter, starting
from the API specification of the microservices under test.
4.1.2 Fault Prediction

The objective of this technique is to support the early identification of
commits more likely to introduce defects, namely: given an application
developed in a continuous integration/DevOps setting (hence with frequent
commits), the goal is to alert on those commits more likely to introduce
a defect in the deployed code and to identify the metrics more stable
and relevant for the prediction. This is done by applying just-in- time (JIT)
prediction enriched with the feature stability score computation.

Deliverable 2.2 provide examples of usage of both these functionalities
on pre-defined datasets.

45



5 FAULT REMOVAL AND FAULT TOLERANCE

5.1 OVERVIEW

This Section reports the techniques we implemented that support fault
removal and fault tolerance.
5.1.1 Failure Analysis

This strategy is an extension of the testing service we initially developed
in WP4. Along with components of the test generation service described
in WP4 (MacroHive service), Delivearble 4.1, we developed a further
service based on causal analysis. MacroHive includes a test generator
callled uTest, two services for monitoring, uSauron and uProxy, which
monitor inter-services interaction, and a newly-developed service for root
cause analysis. This latter service is called uKnows, which collects data by
uSauron and uProxy, and exploits causal reasoning to determine which
microservices are responsible for failures and, in general, for erroneous
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behaviors.
Causality is the influence by which an event contributes to the

production of other events Nogueira et al. (2022). There are two main
activities in causal reasoning: Causal Structure Discovery (CSD), aimed
at extracting a causal model (a mathematical representation of causal
relationships between random variables) from observational data; and
Causal Inference (CI), aimed at quantifying the effect of changing one
or more random variables on others, starting from a causal model. The
random variables describe quantity of interest (e.g., a categorical variable
representing the response code of a microservice), and can be of any type
(e.g., both numerical and categorical); the value they take depends on the
probability distribution associated with them.

A widely adopted solution to model causality is to use Graphical

Causal Models (GCMs). A GCM consists of a causal Direct Acyclic Graph
(DAG) where nodes are random variables and edges define cause-effect (tail-
arrow) relationships between couples of variables. The latter determines the
impact of a change of a certain variable, called cause, over an outcome of
interest, called effect. The most prevailing case is a Structural Causal Model
(SCM), a GCM that uses a Functional Causal Model (FCM), where the value
of each variable Xi is assumed to be a deterministic function of its parents
Pa(Xi) and of the unmeasured disturbance Ui (Xi = f(Pa(Xi), Ui)). An
SCM is formally defined as follows.
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X

Z

Y

(a) Original SCM
X

Z

Y

(b) SCM after an
intervention
on X

Figure 5.1. Example of Structural Causal Model and intervention
Structural Causal Model (SCM). An SCM is a Directed Acyclic Graph G =

(X, E), where nodes ∈ X are random variables and edges ∈ E are the
causal relationships between them. Causal relationships are described as
a collection of structural assignments Xi := fi(Pa(Xi), Ui) that define the
random variablesXi as a function of their (endogenous) parentsPa(Xi) and
of (exogenous) independent random noise variables Ui.

CI aims at estimating the effect of setting one variable Xk to a specific
value “x” ((i.e., doing an intervention on Xk) on one or more variables Xi

of interest. Pearl Pearl and Mackenzie (2018) introduced the do-operator

(written as P (Xi|do(Xk = x))), a mathematical representation of physical
intervention, that changes the SCM graph by removing causal relations of
Xk with its predecessors and replacing the definition Xk := fk(Pa(Xk), Uk)

in the SCM with Xk := x. An example is in Figure 5.1a, where X, Y, and Z
represent the behavior (properly codified - e.g., the HTTP status codes of
responses in our case) of 3 microservices (Mx, My, and Mz) calling each
other. A variable Z is a function of its parents and of a variable Uz capturing
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the random noise – the noise variables are usually not represented in the
graph for simplicity, but there is a hidden node, Ux, Uy, Uz, associated with
each variable with an arrow pointing toX , Y andZ respectively. When there
is no parent, say for Z, the equation becomes Z = Uz. In the example, Uz is
the random variable capturing the behaviorZ and the value it takes depends
solely on the Uz distribution. The behavior Z affects the other two (e.g.,
an erroneous/correct behavior causes others erroneous/correct behavior),
and X affects Y ; thus: X = f(Z,Ux) and Y = f(X,Z, Uy). Suppose
we want to estimate the impact of failure of Mx on My (X → Y in the
graph). Z is said to be a confounder since it causally affects both X and Y ,
generating a spurious association. This means, for instance, that the failure
of My can be falsely attributed to Mx, even if Mz was the ultimate cause.
Performing an intervention leads to the SCM reported in Figure 5.1b, which
allows estimating the real effect of the behavior X on Y , because X is no
longer influenced by Z.

Causal Inference requires a causal model, which can be built in two
main ways: by intervening on variables and observing the post-intervention
distributions (through controlled experiments), or by using CSD algorithms
that aim to seize causal structure from observational data. Causal discovery
algorithms can be divided into constraint-based (e.g., PC, FCI, RFCI), score-
based (e.g., GES, FGES, GFCI), and FCM-based (e.g., LinGAM) Glymour et al.
(2019). An extensive discussion of CSD algorithms can be found in Nogueira
et al. (2022).
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Figure 5.2. Workflow of uKnows

uKnows leverages the power of causal reasoning to automatically infer
causal relations between microservices. Figure 5.2 shows its workflow. It
extracts the Service Dependency Graph (SDG) from the output of uSauron,
collected during the testing sessions, and derives a Direct Acyclic Graph
(DAG). Multiple tests in a session have different inputs, thus dependencies
based on different inputs will be captured by the graph.

Then, uKnows parses and transforms traces in a dataset containing
an entry for every HTTP request, with the microservices involved in the
interaction. The DAG and the dataset are the input for the CSD algorithm.
In particular, the SDG is used as prior knowledge; it specifies required
edges in the causal graph: a causal relation in the causal graph must exist
between two microservices connected in the SDG. Then, the CSD algorithm
infers the final SCM by fitting the causal graph with the dataset. This model
characterizes cause-effect relationships between microservices.

For CSD, we use py-causal,1 a python library that wraps the Java tool
Tetrad Ramsey et al. (2018). We use the FCI algorithm Spirtes et al. (2001),

1py-causal v1.2.1, https://zenodo.org/record/3592985.
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one of the simplest solutions, with the default settings.2 The FCI algorithm
starts with a complete undirected graph connecting all the nodes and
applies conditional independence tests to remove edges (with only edges
that indicate potential causal relationships). The method tests possible
d-separations X ⊥⊥ Y |Z in the skeleton. If there is at least a variable in
Z that d-separates3 the edge, then it is removed Nogueira et al. (2022).
Finally, FCI applies several rules to direct the edges Spirtes et al. (2001). It
gives asymptotically correct results even in the presence of confounders

(unobserved direct common cause of two measured variables) Glymour
et al. (2019). As shown in Figure 5.2, the SCM built from the SDG will have
inverted arrows. For instance, a failure in microservice M1 is likely to find
causes in downstream nodes (M2, M3, and M4) and not the other way
around.

In the Interventions step, uKnows does interventions to predict what
would be the effect of a failure (in robustness testing) or of an erroneous
behavior (in functional testing) of a microservice on the others causally
related to it. We consider erroneous behavior HTTP status codes of classes
4xx and 5xx Martin-Lopez et al. (2019a); we consider failures only response
codes of the class 5xx.

2FCI settings: testId=fisher-z-test, depth=-1, maxPathLength=-1, completeRuleSetUsed=False.
3Let X ,Y , and Z be disjoint subsets of all vertexes in the DAG. Z d-separatesX and Y just in case every

path from a variable in X to a variable in Y contains at least one vertex Xi such that either Xi is a collider (i.e.
the arrows converge on Xi in the path) and no descendant of Xi (including Xi) is in Z, or Xi is not a collider,
and Xi is in Z.
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Assume we want to assess the effect of a failure of M2 on M1 and M6

on M5. We perform interventions on M2 and M6, setting them to fail (Figure
5.2) and thus removing all the edges coming from M2 and M6 parents. Then,
using a new data sample derived by sampling from the post-intervention
distributions, we estimate the outcome by looking at the sample statistics.
If a failure is predicted, a causal relation is detected and reported in the
output (Figure 5.2, last step). Note that the interventions are not physical,
but queries to the model - a real intervention would be to inject a failure
in M2, or to inject a fault to cause its failure. This allows saving the cost
of executing such tests, by exploring the effect of numerous hypothetical
failures of microservices without actually injecting faults or failures. Clearly,
this is traded off by the accuracy of the estimate, that when using the causal
surrogate model is a prediction of the effect, ultimately depending on the
model accuracy.

To show how interventions are performed, let us consider a chain of
invocations as a sequence of microservices M1, ...,Mn, where M1 calls M2

that in turn calls M3, and so on till Mn. The chain in the SCM will have all
the edges directed in the opposite direction, namely from Mi to Mi−1. The
interventions are done as follows: for each node Mk in the chain with at
least one out edge (we do not intervene on M1 as it does not have effects on
others) the engine intervenes on the model querying what would happen to
the Mk’s successors (i.e., do they fail or not?) if Mk exhibited an erroneous
behavior or failed. In other words, we evaluate P (Mi|do(Mk = fail))
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for each i − th successor of Mk in the chain. The query on the model
returns a value for each microservice in the chain corresponding to its
expected behavior (HTTP status code) if Mk fails. From the output of the
interventions, uKnows builds an output graph by drawing edges from the
nodes which it intervened on to each node for which a failure is predicted.
The result of these interventions is a graph highlighting the microservices
causally involved in erroneous behaviors (functional testing) or failures
(robustness testing). These are the microservices that developers should
focus on, since they cause erroneous behavior in other microservices in
the system. For example, in Figure 5.2 they are nodes M2 and M6. The
interventions are done via do-why Sharma et al. (2019), a Microsoft’s library
to perform inference on causal models.
5.1.2 Log-based Anomaly Detection

Operational failures can be mitigated through early error detection,
particularly using anomaly detection techniques.

In the context of WP4, Cinque et al. (2022) from the CINI partner
introduced Micro2vec, a log mining approach for microservice-based
systems that converts diverse log data into numeric representations without
requiring prior format or application knowledge.

Validated on both a Clearwater IP system and an air traffic control
system, Micro2vec enables effective anomaly detection by identifying
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patterns across multiple log sources. It also supports the generation of
synthetic log variants, enhancing detection accuracy beyond traditional
one-class classifiers.

This functionality is extremely useful to identify problems at runtime
and trigger the subsequent root cause analysis. Details for this are in
Deliverable D4.1
5.1.3 Energy Anomaly Detection and Root Cause Analysis

Within the context of this activity, we have tailored algorithms for anomaly
detection (AD) and root cause analysis (RCA) for detecting and tracing energy
consumption bottlenecks.

In microservice-based systems anomalous CPU or memory usage
observed in a particular service may reflect changes in request patterns
or shifts in resource demands across interconnected services. Variations
in system activities can lead to increased loads or create bottlenecks,
thereby limiting subsequent processes. These intricate interactions have a
substantial impact on the total energy consumption of the system, making
the detection and resolution of inefficiencies quite challenging.

Consequently, evaluating the effectiveness of anomaly detection and
root cause analysis techniques tailored to energy consumption issues in
distributed computing contexts is crucial. DevOps teams utilize Anomaly
Detection (AD) algorithms in production to oversee system operations and
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pinpoint deviations from typical patterns, like resource spikes or latency
concerns.

Root Cause Analysis (RCA) algorithms work in conjunction with AD
by identifying the primary causes of these anomalies, facilitating resolution
by the teams. Both AD and RCA are valuable tools for enhancing system
reliability and reducing downtime in practical scenarios.

Within WP5, we examined the efficacy of AD and RCA algorithms
for identifying and diagnosing energy consumption anomalies arising from
performance issues within microservice-based systems. By intentionally
introducing performance-driven energy anomalies, such as increased
CPU and memory consumption within a service, the capability of these
algorithms is evaluated. We evaluated AD and RCA in two popular
benchmarks, SockShop, having 13 services, and Train Ticket, having with
41 services, are used as experimental platforms. Monitoring is conducted
using Prometheus for collecting service-level metrics like CPU and memory
usage, and Scaphandre for gathering service-level power consumption data,
which is then transformed into energy usage statistics. The AD and RCA
algorithms applied in this investigation are chosen from existing studies,
prioritizing those suitable for multivariate data analysis, requiring minimal
processing, and having openly accessible code to ensure integration with
collected performance and energy metrics.

The algorithms we tailored for the energy consumption AD and RCA

55



5.1. OVERVIEW

are in teh following Tables.
Table 5.1. Anomaly Detection Algorithms used in this study

Algorithm Year Type Characteristics

Birch Zhang et al. (1996) 1996 Unsupervised Hierarchical Clustering, Scalable
iForest Liu et al. (2008) 2008 Unsupervised Isolation-based, Scalable

OC-SVM Shin et al. (2005) 2005 Semi-supervised Binary Classification, Kernel-based, Sensitive
LOF Breunig et al. (2000) 2000 Unsupervised Outlier Detection, Density-based, Sensitive

KNN Cover and Hart (1967) 1967 Unsupervised Classification, Instance-based, Sensitive

Table 5.2. Root Cause Analysis Algorithms used in this study
Algorithm Year Type Characteristics

MicroRCA Wu et al. (2020) 2020 Topology Graph-based Analysis Random Walk, Models Anomaly
Propagation, Lightweight

CausalRCA Xin et al. (2023) 2023 Causal Graph-based Analysis Gradient-based, Fine-grained
RCD Ikram et al. (2022) 2022 Causal Graph-based Analysis Hierarchical Learning, Lightweight, Scalable

CIRCA Li et al. (2022) 2022 Causal Graph-based Analysis Cause Inference, Regression-based,
Descendant Adjustment

With this, we are able to provide AD and RCA services for energy
consumption. Technical details and results on how well each algorithm
performs for these two tasks are in a paper we published recently Floroiu
et al. (2024).
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5.1.4 Performance Degradation Assessment

We have finally integrated a strategy designed to evaluate performance
degradation over extended operation periods, an issue referred to as
runtime software aging as per Cotroneo et al. (2014). This was developed in
WP4 and is mentioned in Deliverable D4.1, thus just briefly recalled here.

We ran the evaluation for ML-based systems functioning under
resource constraints typical of cloud-edge computing, where a small-
scale ML task, such as object detection, is executed on edge nodes with
limited processing power, which can be encapsulated by microservices. This
scenario is an example of AIoT systems, structured similarly to a microservice
architecture.

Effective object detection is a central challenge in Computer Vision.
Numerous algorithms aim to satisfy two seemingly contradictory objectives:
achieving high accuracy and maintaining efficiency, all while operating in
real-time with high reliability. These algorithms often run continuously
for prolonged durations, as seen in scenarios like video surveillance or
autonomous vehicles, which exposes them to the risk of software aging.
Within the uDevOps framework Pietrantuono et al. (2022) investigate
software aging in contemporary object detection algorithms. We specifically
conducted long-term experiments to examine how software aging affects
various algorithms, implementation libraries, and datasets. We gathered
data on resource usage (e.g., free/buffer/cache memory, resident memory
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size) and performance metrics (e.g., frames per second) to statistically
examine the presence and magnitude of aging phenomena and differentiate
between various configurations (i.e., algorithms, libraries, datasets). The
findings revealed that all aging indicators employed in our study exhibited
resource or performance degradation, irrespective of the specific algorithm,
library, or dataset. Additionally, four out of six aging indicators, exceeding
50%, highlighted major trends. More comprehensive insights are provided
in the work by Pietrantuono et al. (2022). Although this is not implemented
as a standalone service, the testing strategy therein used can easily be
integrated, as it consists in defining long-running test workloads, gathering
data, and run our analysis on collected data to establish if aging is present
or not.
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6 CONCLUSION

This document presented the work done in WP5 for the definition of
the overall testing process for quality assessment and improvement of
microservice systems in the context of a DevOps engineering process. This
work consisted in putting together the algorithms and techniques developed
in WP2 (for learning-based algorithms) WP3 (for sampling-based algorithms)
and WP4 (for assessment and improvement) under the same process, as
well as in defining new techniques to support either the asssessment or
improvement of one of the quality attributes of interest including reliability,
performance, energy consumption.

We have first described the process-level view, with the services at its
core whose aim is to provide an assessment or improvement functionality
starting from gathered data over DevOps releases. Then, we reviews each
individual service, describing more in details those services developed in
WP5.

Each technique at the core of these services has been prototyped,
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at various maturity levels, and experimented against popular microservice
system and/or dataset benchmarks. This forms the basis for a future
implementation of fully functional framework for continuous Microservice
DevOps Engineering testing.
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