
Project funded by the EU Horizon 2020 programme under the Marie
Skldowska-Curie grant agreement No 871342

uDevoOps

Software Quality Assurance for Microservice Development
Operations Engineering

Deliverable D5.2. Proof-of-concept µDevOps platform

May 2025



Abstract

This is the accompanying document of Deliverable D5.2 of the µDevOps
project, entitled “Proof-of-concept µDevOps platform”, with reference to
the development of the testing techniques for quality improvement and
assessment designed and implemented during the project. The type of the
deliverable is marked as Other, and is made up of software artifacts, along
with this accompanying document. The implemented artifacts support
testing and assessment with respect to several quality attributes of interest,
ranging from functional testing to reliability, performance, robustness
and energy consumption, described in Deliverable 5.1. The artifacts are
made available on the project website www.udevops.eu, as well as on the
following GitHub uDevOps Repository:
https://github.com/uDEVOPS2020/Integrated-Quality-Assessmen

t-and-Improvement-Framework/tree/main

and at the linked Zenodo repository:
https://doi.org/10.5281/zenodo.15563864, indexed by OpenAIRE.

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main
https://doi.org/10.5281/zenodo.15563864


CONTENTS

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PROOF-OF-CONCEPT OF THE INTEGRATED QUALITY ASSESSMENT

AND IMPROVEMENT FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 REPOSITORY STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

i



1 INTRODUCTION

This document describes the artifacts implemented for the µDevOps
proof-of-concept. The testing process that the proof-of-concept supports is
described in D5.1. It foresees the implementation of a set of “services” for
testing, categorized as testing for assessment and testing for improvement,
and further distinguished as means to support fault avoidance, fault

prediction, fault removal, and fault tolerance – which are all the dimensions
of the macro-attribute known as Dependability.

This deliverable consolidates and builds upon outcomes from previous
work packages (WP2, WP3, and WP4), including new techniques developed
in WP5, each contributing specific techniques and tools for context-aware,
in vivo, and risk-based testing. The result is a framework that seamlessly
integrates diverse techniques exploiting a variety of gathered data – from
code repositories and system logs to runtime performance metrics - into a
coherent process for both quality assessment and quality improvement, and
for both the Dev and Ops stage.

1



The techniques target a wide array of quality attributes, including but
not limited to reliability, performance, energy consumption, and robustness.

Deliverable 5.2 contains all the artifacts (code and documentation)
developed for a total of 14 techniques or assessment studies (the “services”
described in D5.1). Therefore, this accompanying document does not
describe the techniques, but focuses on the structure of the repository to
help navigate the artifacts.

It is important to note that, as a proof of concept, not all techniques

are at the same maturity level. Specifically, we distinguish, from top to
bottom maturity level:

• Level 1. Fully implemented tools with user-friendly instructions,
requiring minimal effort to apply to any system under test.

• Level 2. Collections of scripts executable with provided prototypes;
moderate effort needed to adapt to other systems.

• Level 3. Artifacts demonstrating usage through project-specific
experiments; significant effort required to generalize.
Finally, most of the services are experimented on open and widely-

used benchmarking system, such as Train Ticket, Sock Shop, Android
apps, ML benchmarks such asMNIST, CIFAR. Others, especially energ-related
services, are also experimented on the industrial applications provided by
the partners.

2



2 PROOF-OF-CONCEPT OF THE INTEGRATED
QUALITYASSESSMENTAND IMPROVEMENT
FRAMEWORK

2.1 OVERVIEW

The uDevOps Repository located at:
https://github.com/uDEVOPS2020/Integrated-Quality-Assessmen

t-and-Improvement-Framework/tree/main

serves as a proof of concept for the project, whos aim was to share
and enhance knowledge about software quality in microservice systems
through a unified view. The PoC integrates diverse testing techniques,
facilitating both quality assessment and improvement. It leverages data
from code repositories, system logs, and runtime performance metrics to
support Fault Avoidance, Fault Prediction, Fault Removal, Fault Tolerance
Targeted quality attributes include Reliability, Robustness, Performance,
Energy Consumption.

3

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main


2.2. REPOSITORY STRUCTURE

All developed artifacts, including code and documentation, are housed
within this repository and its sub-repositories.

2.2 REPOSITORY STRUCTURE

The main repository encompasses several sub-repositories, each dedicated
to specific testing techniques. Each sub-repository contains its own
README.md detailing specific functionalities, setup instructions, and usage
guidelines.

Here, we list the services with the associated sub-repository. These
are categorized by what they support:

1. Dev or Ops stage;
2. Improvement or Assessment;
3. Fault Avoidance, Prediction, Removal or Tolerance;
4. Quality Attribute

Figure 2.1 depicts all the techniques, described in the following:
• Functional and Robustness Testing

Description: Technique for defects detection to be applied at unit,
integration or system testing stage before release.
Stage: Dev

4



2.2. REPOSITORY STRUCTURE

Logs, Traces, OS/VM/Container Probes, Defect/Ticket/Issue repos, VCS (Git), Alerts, Documentation

User-level (e.g., response time, latency, throughput, #failures, …)
System-level (e.g., MS I/O, internal errors/exception, logs, resources usage statistics, such as CPU, 
memory, disk, power cons., network, energy consumption)
Static metrics (e.g., code features (e.g., churns), process metrics (e.g., git metrics))
Architecture

Source

Metrics

Models

Usage Architecture 

Profile models
- Stateful (e.g., via DTMC)
- Stateless (e.g., via Bayesian

inference) 

Architectural components/services
Dependency graph
Deployment information

Learning
Algorithms

Data

Pre-processing 
E.g., dimensionality reduction, normalization, clustering, features ranking, templates extraction

Algorithms
Classification, Regression, Time series forecasting, Ranking,Reinforcement Learning, Causal

Inference, Generative LLM

WHAT AND HOW TO LEARN: 

Fault avoidacne

Fault prediction

Functional Testing 

Dev Stage
Services
(in-vitro or e
x-vivo)

Component/Node/Service Quality Attribute. Examples: 
Expected Failure Probability, Fault Proneness, Performance, 
Energy Consumption

Dependencies-related parameters. Examples:
Invocation patterns, Causal dependencies, 
Transition probabilities

IMPROVEMENT
/MITIGATION

ASSESSMENT

Robustness Testing 

Performance Testing 

Adaptive Operational Reliability and Performance 
Testing

Log-based Reliability Testing

Tests Prioritiation Defect prediction

Code Improvement

Ops Stage
Services
(Can operate 
in-vivo)

Post-mortem Fault removal Fault tolerance

Failure Root Cause Analysis

Energy Bottleneck Root Cause Analysis

Performance Degradation Assessment

Log-based Anomaly Detection

Energy Anomaly Detection

Energy Consumption Assessment

Next Release

ML Services Assessment

Developed in WP5

Stateful Operational Reliability and Perf. Testing

Figure 2.1. Testing and Assessment Techniques
5



2.2. REPOSITORY STRUCTURE

Goal: Improvement
Scope: Fault Avoidance
Quality attribute: functional correctness, robustness
Internal name: MacroHive
Level of Maturity: 1
Link: MacroHive

• Performance Testing

Description: Technique for generating critical performance
configurations, to be applied at non-functional system testing
stage.
Stage: Dev
Goal: Improvement
Scope: Fault Avoidance
Quality attribute: performance
Internal name: CallMIT
Level of Maturity: 1
Link: CALLMIT

• Code Improvement

Description: Technique for dead code elimination, to be applied at
development stage as static code analysis.
Stage: Dev
Goal: Improvement

6

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/MacroHive
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/CALLMIT


2.2. REPOSITORY STRUCTURE

Scope: Fault Avoidance
Quality attribute: functional correctness
Internal name: Lacuna
Level of Maturity: 1
Link: Lacuna

• Adaptive Operational Reliability Testing

Description: Ex-vivo technique using field data to derive tests. It
is a stateless testing technique, where microservices are tested
individually by generating invocations to the endpoints API by
harnessing adaptive sampling.
Stage: Dev
Goal: Assessment
Scope: Fault Avoidance
Quality attribute: Reliability
Internal name: EMART
Level of Maturity: 1
Link: EMART

• Stateful Operational Reliability and Performance Testing

Description: Ex-vivo technique using field data to derive tests. It is
a stateful testing technique, with a focus on continuous testing and
monitoring. It involves replicating the observed runtimeworkload, in
terms of type and intensity of requests, defining a profile for testing

7

https://github.com/S2-group/Lacuna-evaluation
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/EMART


2.2. REPOSITORY STRUCTURE

that enables assessment of both reliability and performance.
Stage: Dev
Goal: Assessment
Scope: Fault Avoidance
Quality attribute: Reliability and Performance
Internal name: MIPaRT
Level of Maturity: 1
Link: MIPaRT

• Log-based Reliability Testing

Description: Ex-vivo technique that exploits logs data for operational
reliability assessment, as well as for fault detection and coverage
driven by the observed behaviour in operation. Useful when
operational data about specific inputs are expensive to collect (e.g.,
require instrumentation) and we want to minimize the manual
intervention.
Stage: Dev
Goal: Assessment and Improvement
Scope: Fault Avoidance
Quality attribute: Reliability and Functional Correctness
Internal name: LoMiT
Level of Maturity: 2
Link: LoMiT

8

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/MIPaRT
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/LoMiT


2.2. REPOSITORY STRUCTURE

• Energy Consumption Assessment

Description: Analysis of energy consumption and performance
metrics of web apps, IoT, and of monitoring tools in microservices.
Stage: Dev
Goal: Assessment
Scope: Fault Avoidance
Quality attribute: Energy, Performance
Internal name: N/A
Level of Maturity: 2, 3
Link: Energy Consumption Assessment, Energy-Monitoring

• ML Services Assessment

Description: Algorithms to assess accuracy of ML services based
on sampling, for both image classifcation and LLMs. Useful for
microservices wrapping ML-based functionalities.
Stage: Dev
Goal: Assessment
Scope: Fault Avoidance
Quality attribute: Reliability
Internal name: DeepSample
DeepSample4LLM

Level of Maturity: 2
Link: DeepSample, DeepSample4LLM

9

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Energy_Consumption_Assessment
https://github.com/S2-group/icsoc-2023-energy-perf-monitoring-docker-rep-pkg
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/DeepSample
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/OperationalTesting4LLMs


2.2. REPOSITORY STRUCTURE

• Test prioritization

Description: Given a list of tests to run, the goal of this service is
to run first the ones more likely to expose failures. Prioritization is
done by applying machine learning (learning-to-rank) algorithms to
features of request/response and/or of the invokedMicroservice that
correlate more with quality metrics.
Stage: Dev
Goal: Improvement
Scope: Fault Prediction
Quality attribute: Functional Correctness
Internal name: Learning-To-Rank
Level of Maturity: 2
Link: Learning-To-Rank

• Defect Prediction

Description: The objective of this technique is to support the early
identification of commits more likely to introduce defects, namely:
given an application developed in a continuous integration/DevOps
setting (hence with frequent commits), the goal is to alert on those
commits more likely to introduce a defect in the deployed code. This
is done by applying just-in-time (JIT) prediction enriched with the
feature stability score computation.
Stage: Dev

10

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Learning-To-Rank


2.2. REPOSITORY STRUCTURE

Goal: Improvement
Scope: Fault Prediction
Quality attribute: Functional Correctness
Internal name: N/A
Level of Maturity: 2
Link: Defect-Prediction

• Failure Root Cause Analysis

Description: A service called uKnows, developed in the context of
MacroHive service – see above - which, based on collected data,
exploits causal reasoning to determine which microservices are
responsible for failures and, in general, for erroneous behaviour
Stage: Ops
Goal: Improvement
Scope: Fault Removal
Quality attribute:
Internal name: uKnows
Level of Maturity: 1
Link: uKnows

• Log-based Anomlay Detection

Description: A log mining service for microservice-based systems
that converts diverse log data into numeric representations without
requiring prior format or application knowledge, that enables

11

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Defect-Prediction
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/MacroHive/uKnows


2.2. REPOSITORY STRUCTURE

effective anomaly detection by identifying patterns across multiple
log sources.
Stage: Ops
Goal: Improvement
Scope: Fault Tolerance
Quality attribute: Reliability
Internal name: Micro2vec
Level of Maturity: 2
Link: Micro2vec

• Energy Anomaly Detection

Description: Service encapsulating algorithms for anomaly detection
to spot energy bottlenecks in a microservice system.
Stage: Ops
Goal: Improvement
Scope: Fault Tolerance
Quality attribute: Energy
Internal name: N/A
Level of Maturity: 3
Link:
Multivariate Energy AD & RCA

• Energy Root Cause Analysis

12

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Micro2vec
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Multivariate-AD-and-RCA-of-Energy-Issues-in-Microservice-based-Systems


2.2. REPOSITORY STRUCTURE

Description: Service encapsulating algorithms for Root Cause
Analysis to spot services causing energy bottlenecks in amicroservice
system.
Stage: Ops
Goal: Improvement
Scope: Fault Tolerance
Quality attribute: Energy
Internal name: N/A
Level of Maturity: 3
Link:
Multivariate Energy AD & RCA

13

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Multivariate-AD-and-RCA-of-Energy-Issues-in-Microservice-based-Systems

	Contents
	Introduction
	Proof-of-Concept of the Integrated Quality Assessment and Improvement Framework
	Overview
	Repository Structure


