Project funded by the EU Horizon 2020 programme under the Marie

Skldowska-Curie grant agreement No 871342

uDevoOps

Software Quality Assurance for Microservice Development
Operations Engineering

Deliverable D5.2. Proof-of-concept ;.DevOps platform

CO

uDevOps

May 2025

Abstract

This is the accompanying document of Deliverable D5.2 of the uDevOps
project, entitled “Proof-of-concept nDevOps platform”, with reference to
the development of the testing techniques for quality improvement and
assessment designed and implemented during the project. The type of the
deliverable is marked as Other, and is made up of software artifacts, along
with this accompanying document. The implemented artifacts support
testing and assessment with respect to several quality attributes of interest,
ranging from functional testing to reliability, performance, robustness
and energy consumption, described in Deliverable 5.1. The artifacts are
made available on the project website www.udevops. eu, as well as on the

following GitHub uDevOps Repository:

https://github.com/uDEVOPS2020/Integrated-Quality-Assessmen

t-and-Improvement-Framework/tree/main
and at the linked Zenodo repository:

https://doi.org/10.5281/zenodo. 15563864, indexed by OpenAIRE.

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main
https://doi.org/10.5281/zenodo.15563864

CcO

uDevOps

CONTENTS

L0001 I e i

1 INTRODUCTION ..ottt iiiiiiiiiietiiineeeennns 1

2 PROOF-OF-CONCEPT OF THE INTEGRATED QUALITY ASSESSMENT

AND IMPROVEMENT FRAMEWORKcciiiiiiiiiiiiiiiiiinnn, 3
21 OVERVIEW ...ttt ittt i ieiinas 3
2.2 REPOSITORY STRUCTUREciiiiiiiiiiiiiiiieinnnnnnns 4

CcO

uDevOps

1 INTRODUCTION

This document describes the artifacts implemented for the uDevOps
proof-of-concept. The testing process that the proof-of-concept supports is
described in D5.1. It foresees the implementation of a set of “services” for
testing, categorized as testing for assessment and testing for improvement,
and further distinguished as means to support fault avoidance, fault
prediction, fault removal, and fault tolerance - which are all the dimensions

of the macro-attribute known as Dependability.

This deliverable consolidates and builds upon outcomes from previous
work packages (WP2, WP3, and WP4), including new techniques developed
in WP5, each contributing specific techniques and tools for context-aware,
in vivo, and risk-based testing. The result is a framework that seamlessly
integrates diverse techniques exploiting a variety of gathered data - from
code repositories and system logs to runtime performance metrics - into a
coherent process for both quality assessment and quality improvement, and

for both the Dev and Ops stage.

CcO

uDevOps

The techniques target a wide array of quality attributes, including but

not limited to reliability, performance, energy consumption, and robustness.

Deliverable 5.2 contains all the artifacts (code and documentation)
developed for a total of 14 techniques or assessment studies (the “services”
described in D5.1). Therefore, this accompanying document does not
describe the techniques, but focuses on the structure of the repository to

help navigate the artifacts.

It is important to note that, as a proof of concept, not all techniques
are at the same maturity level. Specifically, we distinguish, from top to

bottom maturity level:

e Level 1. Fully implemented tools with user-friendly instructions,

requiring minimal effort to apply to any system under test.

e Level 2. Collections of scripts executable with provided prototypes;

moderate effort needed to adapt to other systems.

e Level 3. Artifacts demonstrating usage through project-specific

experiments; significant effort required to generalize.

Finally, most of the services are experimented on open and widely-
used benchmarking system, such as Train Ticket, Sock Shop, Android
apps, ML benchmarks such as MNIST, CIFAR. Others, especially energ-related
services, are also experimented on the industrial applications provided by

the partners.

CcO

uDevOps

2 PROOF-OF-CONCEPT OF THE INTEGRATED
QUALITY ASSESSMENT AND IMPROVEMENT
FRAMEWORK

241 OVERVIEW

The uDevOps Repository located at:

https://github.com/uDEVOPS2020/Integrated-Quality-Assessmen

t-and-Improvement-Framework/tree/main

serves as a proof of concept for the project, whos aim was to share
and enhance knowledge about software quality in microservice systems
through a unified view. The PoC integrates diverse testing techniques,
facilitating both quality assessment and improvement. It leverages data
from code repositories, system logs, and runtime performance metrics to
support Fault Avoidance, Fault Prediction, Fault Removal, Fault Tolerance
Targeted quality attributes include Reliability, Robustness, Performance,

Energy Consumption.

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main

CcO

uDevOps

2.2. REPOSITORY STRUCTURE

All developed artifacts, including code and documentation, are housed

within this repository and its sub-repositories.

2.2 REPOSITORY STRUCTURE

The main repository encompasses several sub-repositories, each dedicated
to specific testing techniques. Each sub-repository contains its own
README .md detailing specific functionalities, setup instructions, and usage

guidelines.

Here, we list the services with the associated sub-repository. These

are categorized by what they support:

1. Dev or Ops stage;

N

Improvement or Assessment;
3. Fault Avoidance, Prediction, Removal or Tolerance;

4. Quality Attribute

Figure 2.1 depicts all the techniques, described in the following:

¢ Functional and Robustness Testing
Description: Technique for defects detection to be applied at unit,
integration or system testing stage before release.

Stage: Dev

O

uDevOps

2.2. REPOSITORY STRUCTURE

Logs, Traces, OS/VM/Container Probes, Defect/Ticket/Issue repos, VCS (Git), Alerts, Documentation L source

User-level (e.g., response time, latency, throughput, #failures, ...)
System-level (e.g., MS I/0, internal errors/exception, logs, resources usage statistics, such as CPU, L Metrics
memory, disk, power cons., network, energy consumption)
Static metrics (e.g., code features (e.g., churns), process metrics (e.g., git metrics))

Architecture ;

Profile models
Models
Data - Stateful (e.g, via DTMC) Drecheltne:::ral c;ml:)onents/serwces
- Stateless (e.g., via Bayesian P! Cy grap

Deployment information
inference) I

WHAT AND HOW TO LEARN:
Component/Node/Service Quality Attribute. Examples: Dependencies-related parameters. Examples:
Expected Failure Probability, Fault Proneness, Performance, Invocation patterns, Causal dependencies,
Energy Consumption Transition probabilities
Learning
Pre-processing Algorithms
Fault avoidacne
= ional Testi Adaptive Operational Reliability and Performance
ASSESSMENT uactionalifesting Testing
Robustness Testing Stateful Operational Reliability and Perf. Testing Dev Stage
IMPROVEMENT Services
/MITIGATION [Performance Testing] l Log-based Reliability Testing l (in-vitro or e
X-vivo)
E Code Improvement Energy Consumption Assessment
Developed in WP5 Performance Degradation Assessment
[ML Services Assessment]
Fault prediction
Tests Prioritiation Defect prediction
Ops Stage
Post-mortem Fault removal Fault tolerance Services
(Can operate
Failure Root Cause Analysis Log-based Anomaly Detection in-vi
Next Release in-vivo)
l Energy Bottleneck Root Cause Analysis][Energy Anomaly Detection]

Figure 2.1. Testing and Assessment Techniques

CcO

uDevOps

2.2. REPOSITORY STRUCTURE

Goal: Improvement
Scope: Fault Avoidance

Quality attribute: functional correctness, robustness

Internal name: MacroHive

Level of Maturity: 1

Link: MacroHive

e Performance Testing
Description: Technique for generating critical performance
configurations, to be applied at non-functional system testing
stage.

Stage: Dev

Goal: Improvement
Scope: Fault Avoidance

Quality attribute: performance

Internal name: CallMIT

Level of Maturity: 1

Link: CALLMIT

e Code Improvement
Description: Technique for dead code elimination, to be applied at
development stage as static code analysis.
Stage: Dev

Goal: Improvement

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/MacroHive
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/CALLMIT

CcO

uDevOps

2.2. REPOSITORY STRUCTURE

Scope: Fault Avoidance

Quality attribute: functional correctness

Internal name: Lacuna

Level of Maturity: 1

Link: Lacuna

e Adaptive Operational Reliability Testing

Description: Ex-vivo technique using field data to derive tests. It
is a stateless testing technique, where microservices are tested
individually by generating invocations to the endpoints API by
harnessing adaptive sampling.

Stage: Dev

Goal: Assessment
Scope: Fault Avoidance

Quality attribute: Reliability

Internal name: EMART

Level of Maturity: 1

Link: EMART

e Stateful Operational Reliability and Performance Testing

Description: Ex-vivo technique using field data to derive tests. It is
a stateful testing technique, with a focus on continuous testing and
monitoring. It involves replicating the observed runtime workload, in

terms of type and intensity of requests, defining a profile for testing

7

https://github.com/S2-group/Lacuna-evaluation
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/EMART

CcO

uDevOps

2.2. REPOSITORY STRUCTURE

that enables assessment of both reliability and performance.

Stage: Dev

Goal: Assessment
Scope: Fault Avoidance

Quality attribute: Reliability and Performance

Internal name: MIPaRT

Level of Maturity: 1

Link: MIPaRT

e Log-based Reliability Testing

Description: Ex-vivo technique that exploits logs data for operational
reliability assessment, as well as for fault detection and coverage
driven by the observed behaviour in operation. Useful when
operational data about specific inputs are expensive to collect (e.g.,
require instrumentation) and we want to minimize the manual
intervention.

Stage: Dev

Goal: Assessment and Improvement

Scope: Fault Avoidance

Quality attribute: Reliability and Functional Correctness

Internal name: LoMiT

Level of Maturity: 2

Link: LoMIT

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/MIPaRT
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/LoMiT

2.2. REPOSITORY STRUCTURE

CcO

uDevOps

Energy Consumption Assessment

Description: Analysis of energy consumption and performance
metrics of web apps, 10T, and of monitoring tools in microservices.
Stage: Dev

Goal: Assessment

Scope: Fault Avoidance

Quality attribute: Energy, Performance

Internal name: N/A

Level of Maturity: 2, 3

Link: Energy Consumption Assessment, Energy-Monitoring

ML Services Assessment

Description: Algorithms to assess accuracy of ML services based
on sampling, for both image classifcation and LLMs. Useful for
microservices wrapping ML-based functionalities.

Stage: Dev

Goal: Assessment

Scope: Fault Avoidance

Quality attribute: Reliability

Internal name: DeepSample

DeepSample4LLM

Level of Maturity: 2

Link: DeepSample, DeepSample4LLM

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Energy_Consumption_Assessment
https://github.com/S2-group/icsoc-2023-energy-perf-monitoring-docker-rep-pkg
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/DeepSample
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/OperationalTesting4LLMs

2.2. REPOSITORY STRUCTURE

CcO

uDevOps

Test prioritization

Description: Given a list of tests to run, the goal of this service is
to run first the ones more likely to expose failures. Prioritization is
done by applying machine learning (learning-to-rank) algorithms to
features of request/response and/or of the invoked Microservice that
correlate more with quality metrics.

Stage: Dev

Goal: Improvement

Scope: Fault Prediction

Quality attribute: Functional Correctness

Internal name: Learning-To-Rank

Level of Maturity: 2

Link: Learning-To-Rank

Defect Prediction

Description: The objective of this technique is to support the early
identification of commits more likely to introduce defects, namely:
given an application developed in a continuous integration/DevOps
setting (hence with frequent commits), the goal is to alert on those
commits more likely to introduce a defect in the deployed code. This
is done by applying just-in-time (JIT) prediction enriched with the
feature stability score computation.

Stage: Dev

10

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Learning-To-Rank

CcO

uDevOps

2.2. REPOSITORY STRUCTURE

Goal: Improvement
Scope: Fault Prediction

Quality attribute: Functional Correctness

Internal name: N/A

Level of Maturity: 2

Link: Defect-Prediction

¢ Failure Root Cause Analysis

Description: A service called uKnows, developed in the context of
MacroHive service - see above - which, based on collected data,
exploits causal reasoning to determine which microservices are
responsible for failures and, in general, for erroneous behaviour
Stage: Ops

Goal: Improvement

Scope: Fault Removal

Quality attribute:

Internal name: uKnows

Level of Maturity: 1

Link: uKnows

e Log-based Anomlay Detection

Description: A log mining service for microservice-based systems
that converts diverse log data into numeric representations without

requiring prior format or application knowledge, that enables

11

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Defect-Prediction
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/MacroHive/uKnows

CcO

uDevOps

2.2. REPOSITORY STRUCTURE

effective anomaly detection by identifying patterns across multiple
log sources.

Stage: Ops

Goal: Improvement

Scope: Fault Tolerance

Quality attribute: Reliability

Internal name: Micro2vec

Level of Maturity: 2

Link: Micro2vec

e Energy Anomaly Detection

Description: Service encapsulating algorithms for anomaly detection
to spot energy bottlenecks in a microservice system.

Stage: Ops

Goal: Improvement

Scope: Fault Tolerance

Quality attribute: Energy

Internal name: N/A

Level of Maturity: 3
Link:
Multivariate Energy AD & RCA

e Energy Root Cause Analysis

12

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Micro2vec
https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Multivariate-AD-and-RCA-of-Energy-Issues-in-Microservice-based-Systems

CcO

uDevOps

2.2. REPOSITORY STRUCTURE

Description: Service encapsulating algorithms for Root Cause

Analysis to spot services causing energy bottlenecks in a microservice
system.

Stage: Ops

Goal: Improvement

Scope: Fault Tolerance

Quality attribute: Energy

Internal name: N/A

Level of Maturity: 3
Link:

Multivariate Energy AD & RCA

13

https://github.com/uDEVOPS2020/Integrated-Quality-Assessment-and-Improvement-Framework/tree/main/Multivariate-AD-and-RCA-of-Energy-Issues-in-Microservice-based-Systems

	Contents
	Introduction
	Proof-of-Concept of the Integrated Quality Assessment and Improvement Framework
	Overview
	Repository Structure

